EQUAZIONI DIFFERENZIALI

E S E R C 1 7 1	
(CON RISULTATI E ALCUNI SVOLGIMEN	τι)
INDICE PROVVISORIO:	
EQUAZ. VARIABILI SEPARABILI (QUESITI)	PAG. 2
EQUAZ. VARIABILI SEPARABILI (SVOLGIMENTI)	PAG. 3
EQUAZ. VARIABILI SEPARABILI (QUESITI)	PAG. 20
EQUAZ. LINEARI (QUESITI)	PAG. 21
PROVA SIMULATA	PAG. 22
SVOLGIMENTO PROVA SIMULATA	PAG. 23
PROVA SIMULATA	PAG. 38
SVOLGIMENTO PROVA SIMULATA	PAG. 39
PRO VA SIMULATA	PAG. 46
QUESITI VARI (SVOLTI) PRESI DA PROVE D'ESAME	PAG. 47

Analisi Matematica (II modulo)- Exe.

6 maggio 2020 (14.00-16.00) - docente: Prof. Emanuele Callegari - Università di Roma Tor Vergata

NOTA: I PROBLEMI CON L'ASTERISCO

RISOLVERE I SEGUENTI PROB. DI CAUCHY:

$$\int y' = 2x^3 e^{y-x^2}$$

$$\begin{cases} y' = \frac{Tr \cdot (y^2 - 2y + 2)}{2\sqrt{x}} \\ y(\frac{7}{4}) = 0 \end{cases}$$

$$\begin{cases} y' = 3 \cos^2 x \cdot \sin x \cdot \cos^2 y \\ y(4\pi) = -5\pi \end{cases}$$

$$\begin{cases} y' = -y^2 \cos x e^{-\frac{x}{y} + \sin x} \\ y(0) = \frac{1}{\ln 2} \end{cases}$$

$$\begin{cases} y' = -\frac{(\sqrt[3]{y^2} + 2\sqrt[3]{y})}{4x} \\ y(1) = 8 \end{cases}$$

$$\begin{cases} y' = 3 \cos^2 x \cdot |\sin x| \cdot \cos^2 y \\ y(0) = 0 \end{cases}$$

TROVARE TUTTE LE SOLUZIONI DELLE SEGUENTI EQUAZIONI DIFFERENZIALI:

$$Y' = \frac{x}{y}$$

$$\begin{cases} Y' = x e^{x} sin (Y^2 - 44 + 3) \\ Y(0) = 2 \end{cases}$$

CALCOLARE
$$\lim_{N\to 0} \frac{Y(N)-2}{N^2}$$

DIRE, MOTIVANDO LA RISPOSTA, SE IL PR. DI CAUCHY ASSEGNATO HA UNA SOLA SOL OPPURE NO

Analisi Matematica (II modulo)- Exe. 9 6 maggio 2020 (14.00-16.00) - docente: Prof. Emanuele Callegari - Università di Roma Tor Vergata SOLUZIONI RISOLVERE IL PROB. DI CAVCHY $\begin{cases} y' = 2x^3e^{y-x^3} \\ y(0) = 0 \end{cases}$ P.1 SVOLGIMENTO SICCOME EY NON SI ANNULLA MAI, LA SOL. Y(X) SODDISFA: $-e^{-\lambda(x)} \wedge (x) = -5 \times 3 \cdot 6 - x$ (1) ABBIAHO: = (n (e-n) dn = n e-n - se-ndn = = ue-u+e-n=(x2+1)e-x2 QUINDI LA (1) DIVENTA: $\left(\begin{array}{c} e^{-4(n)} \end{array}\right) = \left(\begin{array}{c} (n^2+1)e^{-n^2} \end{array}\right)$ CIOE $e^{-Y(u)} = (x^2 + 1) \cdot e^{-x^2} + c$ DA CUI SEBUE: Y(x)=-ln((x2+1).e-x+c) (2) Y(0)=0, DEVE ESSERE: MA PERCHE SIA -0= ln ((0+1) e°+e) CIOE: 0 = ln (1+c)

DA CUI SEGUE C = 0

QUINDI LA (1) DIVENTA:

$$y(a) = -h ((a^{1}-1) e^{-h^{2}}) = x^{1} - h - (a^{1}x^{2})$$
CHE È DEFINITA SU EUTTO IR.

$$lA VERIFICA DIRETTA NOSTAN CHE VILI SODDISFA LI EQUATIONE. IMFATTI:

$$y'(a) = \left(x^{1} - h - (a^{1}x^{2})\right)^{1} = 2x - \frac{2x}{4+x^{2}} = \frac{2x^{1}+x^{2}+2h}{4+x^{2}} = \frac{2x^{2}}{4+x^{2}}$$

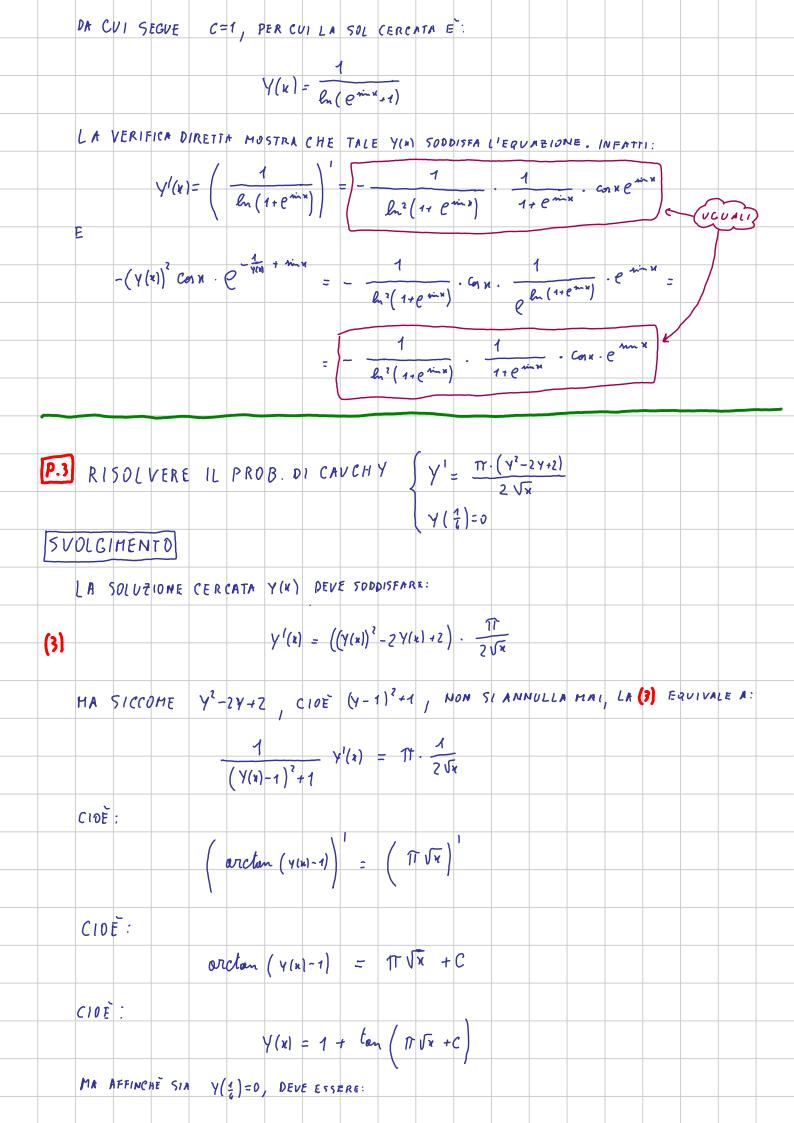
$$2x^{3} \cdot e^{y(a-x^{2})} = 2x^{3} \cdot e^{-h - (a^{2}x^{2})} = 2x^{2} \cdot \frac{1}{4+x^{2}} = \frac{2x^{2}}{4+x^{2}}$$
QUINDI LA SOL. MASSIMALE DEL SISTEMA È (IR, Y(a)) (DM Y(A) DATA DATA

$$y'(a) = x^{2} - h - (a^{2}x^{2}) = 2x^{2} \cdot \frac{1}{4+x^{2}} = \frac{2x^{2}}{4+x^{2}}$$
P.2 RISOLVERE IL PROB. DI CAUCHY

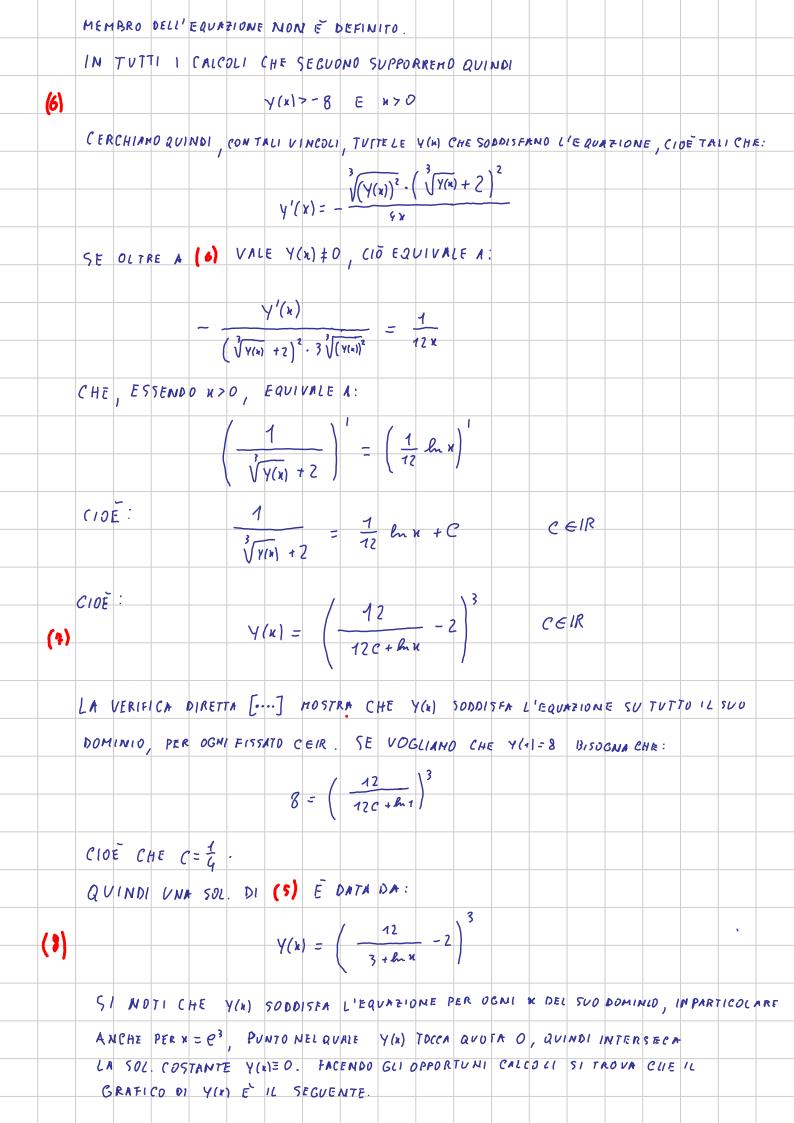
$$y'(a) = x^{2} - h - (a^{2}x^{2}) = \frac{2x^{2}}{4+x^{2}} = \frac{2x^{2}}{4+x^{2}}$$
SUDLGIMENTO

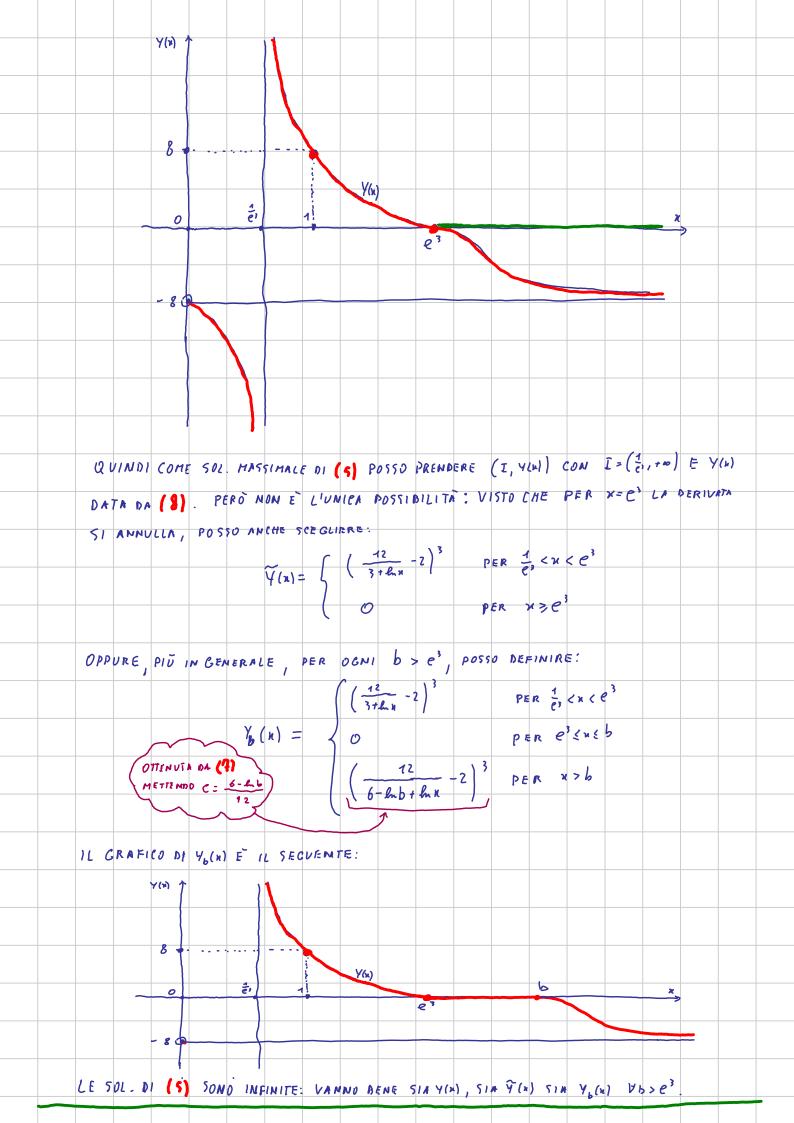
DETTA Y(a) LA SOL CERCATA, ESSA DEUE SODDISFARE:

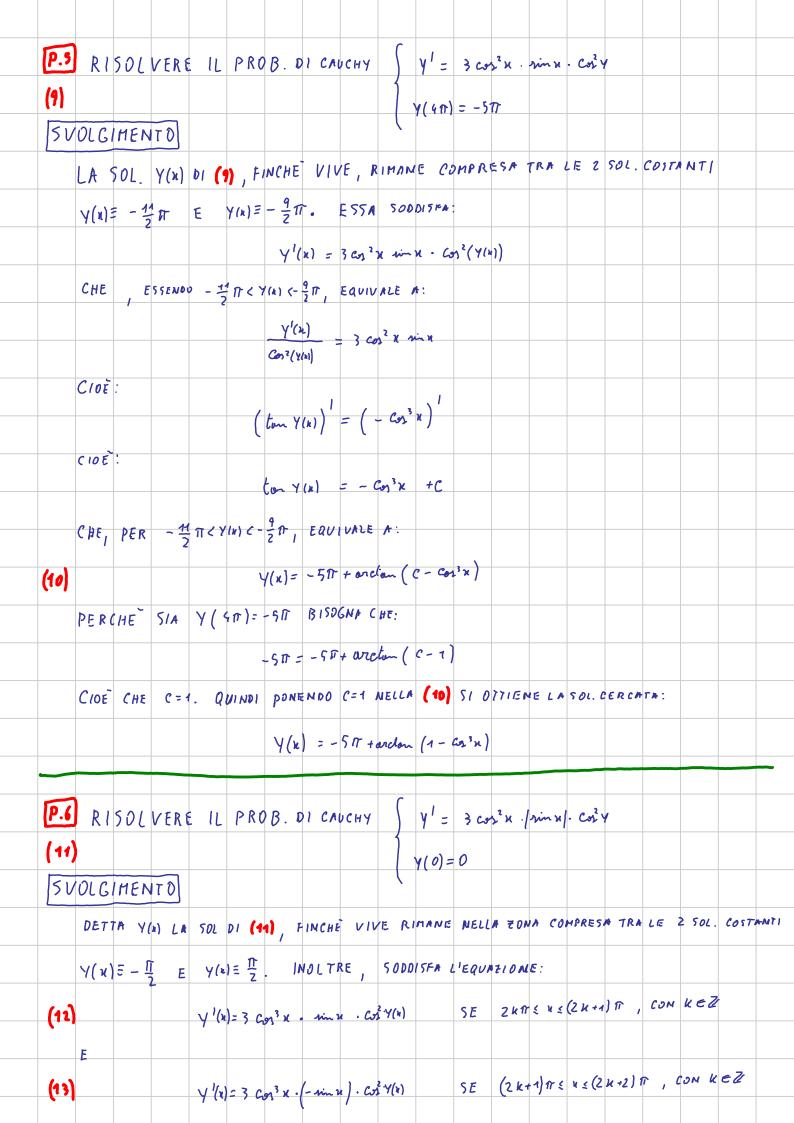
$$y'(a) = x^{2} - h - (x^{2}x^{2}) = \frac{2x^{2}}{4+x^{2}} = \frac{2x^{2}}{4+x^{2}}$$
CHE, FINCHE Y(a) 40, EQUIVALE A:

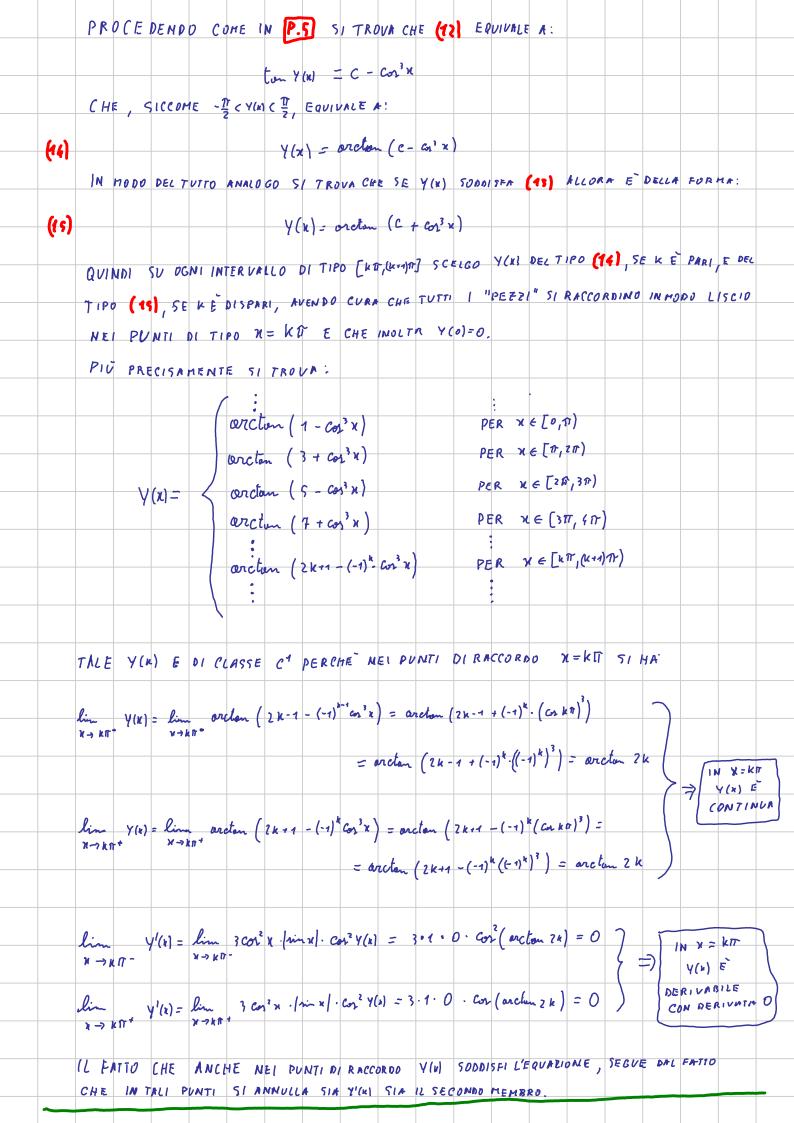

$$e^{\frac{1}{100}} \cdot \left(-\frac{4}{(100)}\right) \cdot y'(a) = c_{0}x \cdot e^{-h x^{2}}$$
CIDE:

$$e^{\frac{1}{100}} \cdot \left(-\frac{4}{(100)}\right) \cdot \left(-\frac{4}{(100)}\right) \cdot \left(-\frac{4}{(100)}\right) \cdot \left(-\frac{4}{(100)}\right) \cdot \left(-\frac{4}{(100)}\right)$$
RICORDANDO CHE DEVE ESSERE Y(a) = $\frac{4}{4x^{2}} \cdot x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2}$

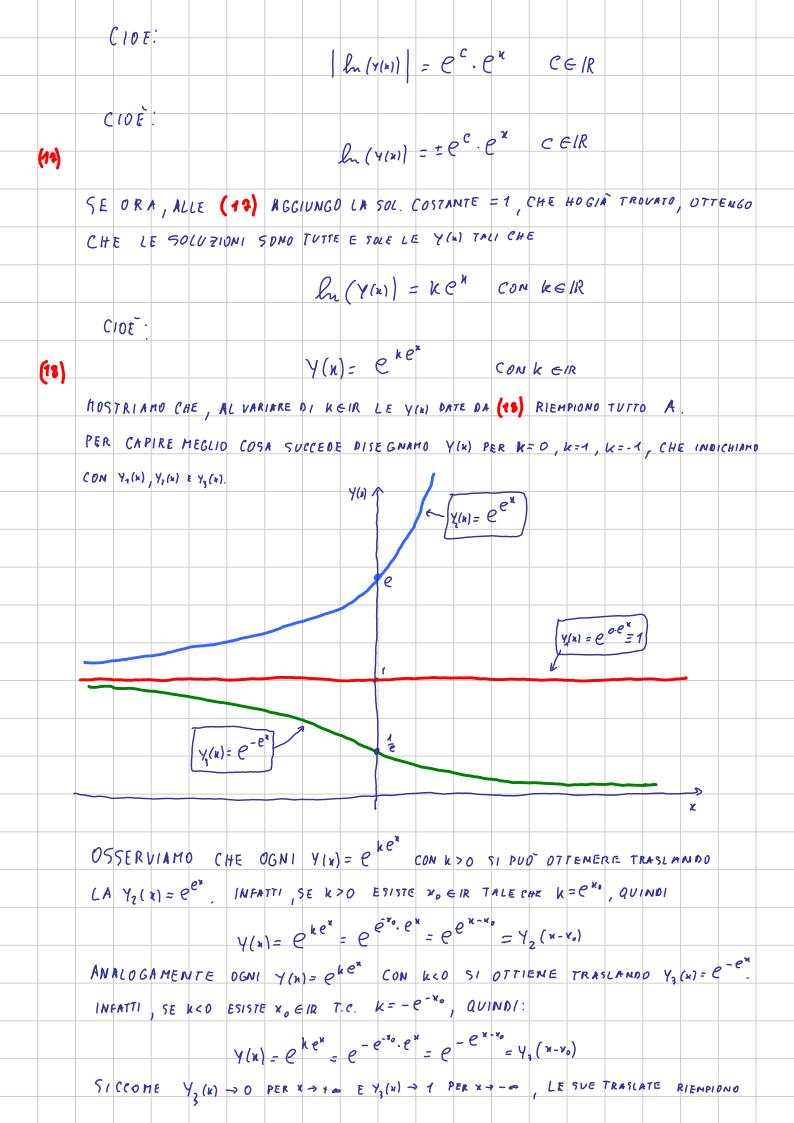

$$la 2 = h - (e^{-h x^{2}}) = h - (e^{-h x^{2}})$$
RICORDANDO CHE DEVE ESSERE Y(a) = $\frac{4}{4x^{2}} \cdot x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2}$

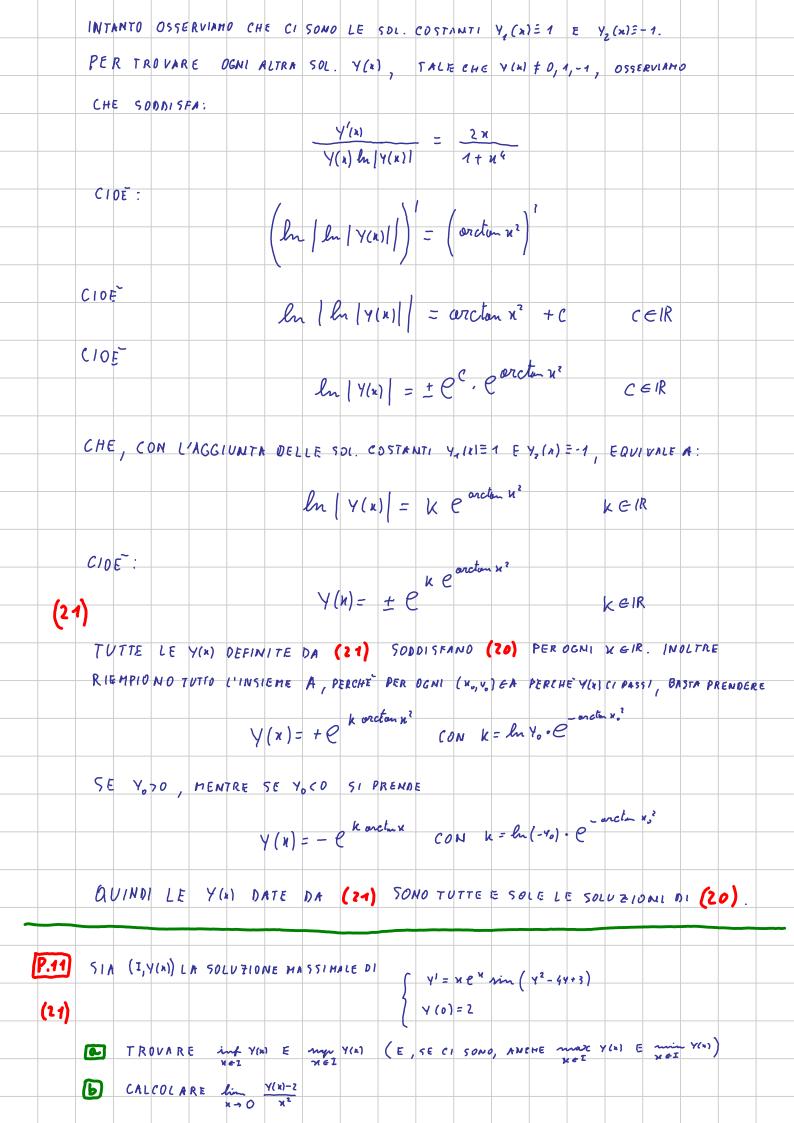

$$la 2 = h - (e^{-h x^{2}}) = h - (e^{-h x^{2}})$$


$$la 2 = h - (e^{-h x^{2}}) = h - (e^{-h x^{2}})$$
RICORDANDO CHE DEVE ESSERE Y(b) = $\frac{4}{4x^{2}} \cdot x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2}$$$

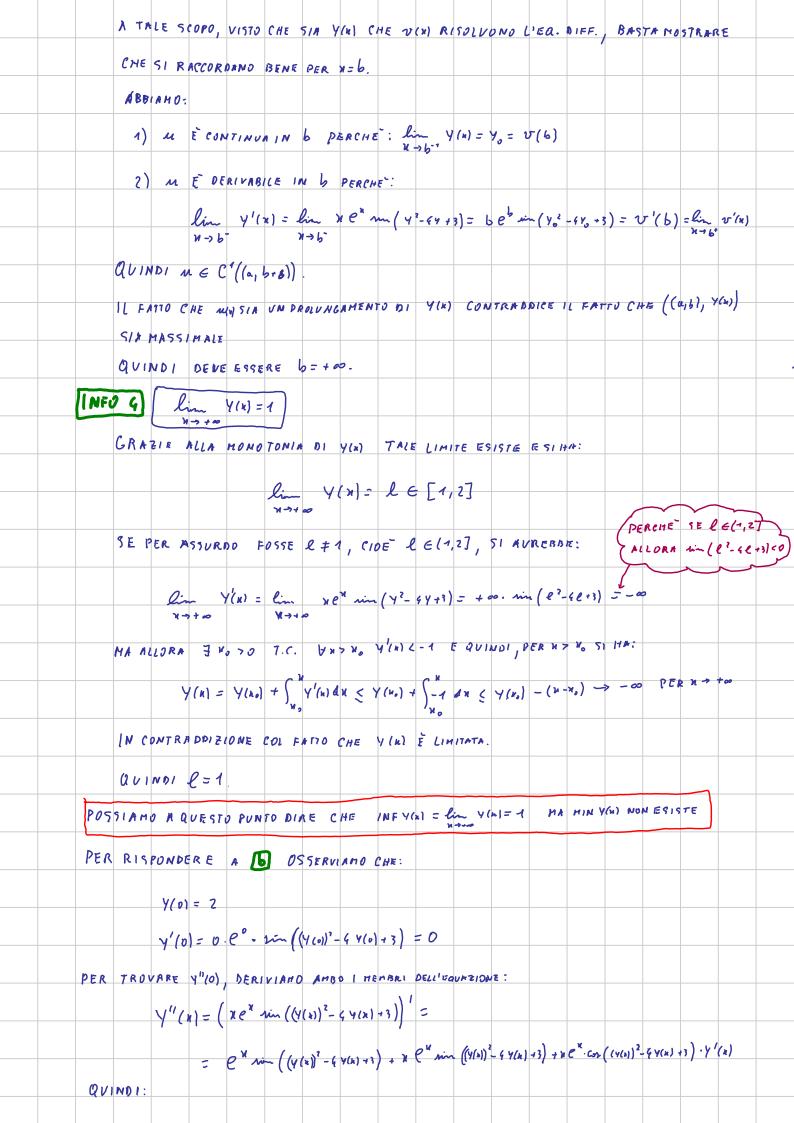


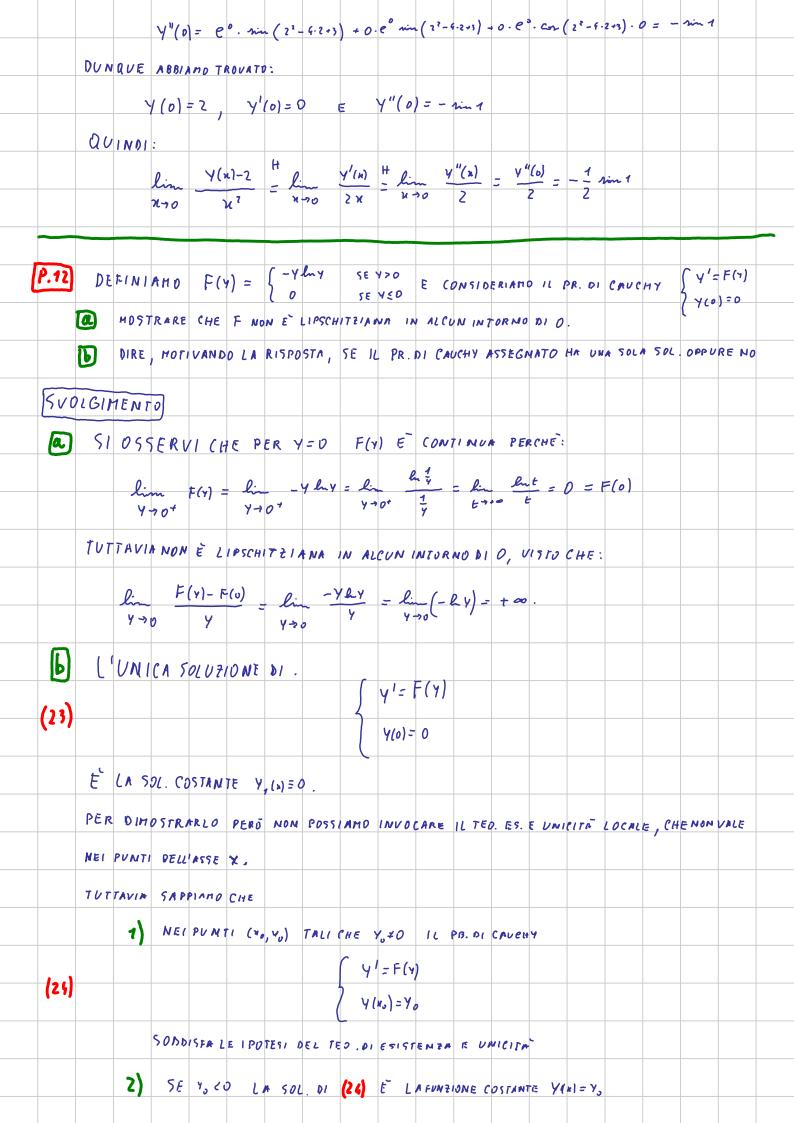
	$O = 1 + ton \left(\pi \cdot \frac{1}{2} + C\right)$
	$C 10 E C = -\frac{3}{6} \pi$
	QUINDI LA SOL. CERCATA E.
(4)	
(4)	$Y(n) = 1 + ton \left(\pi \sqrt{n} - \frac{3}{4} \pi \right)$
	L'INTERVALLO MASSIMALE DEL DOMINIO DI Y(x) CHE CONTIENE IL PUNTO X3 = 4 E:
	$-\frac{11}{2} < \pi \sqrt{\kappa} - \frac{3}{4} \pi < \frac{11}{2}$
	CIO E:
	1 4 V¥ < 5 4
	C10E: 1 25
	$\frac{1}{16} < x < \frac{25}{16}$
	2010 117 1 4 117 110 110 110 110 110 110 110 110 110
	POICHE LA VERIFICA DIRETTA (CHE STAVOLTA OMETITIAMO) MOSTRA CHE (6) SODDISFA
	L'EQUAZIONE SU TUTTO L'INTERVALLO (1/16, 25), POSSIANO CONCLUBERE CHE LA
	SOL CERCATA \vec{E} (I, Y(1)), CON $\vec{I} = \left(\frac{1}{16}, \frac{25}{16}\right) \vec{E}$ Y(1) DATO DA (6).
	(3-3-12
P.4	RISOLVERE IL PROB. DI CAUCHY $\int Y' = -\frac{(\sqrt[3]{y^2} + 2\sqrt[3]{y})^2}{4x}$
(5)	
	OLGIMENTO) (Y(1)=8
1300	JUGITEN I O
	LA FUNZIONE:
	$F(Y) = \left(\sqrt[3]{Y^2} + 2\sqrt[3]{Y}\right)^2 = \sqrt[3]{Y^2} \cdot \left(\sqrt[3]{Y} + Z\right)^2$
	SI ANNULLA PER Y= 0 E Y= -8, QUINDI L'EQUAZIONE (NON IL P. DI CAUCHY!)
	HA 2 SOL COSTANTI: Y, (x)= 0 E Y2(x)= -8.
	SI NOTI CHE F(Y) NON E LIPSCHITZIANA IN ALCUN INTORNO DI O, QUINDI NEI PUNTI
	DI ORDINATA O NON VALE IL TED. DI ES. E UNICITÀ.
	CID SIGNIFICA CHE LA SOLUZIONE COSTANTE Y(x) = O POTREBBE ESSERE
	INTERSE CATA DA ALTRE SOLUZIONI.
	INVECE LA SOL. Y2 (x) =-8 NON PUD ESSERE INTERSECATA, PERCHE IL TED. DI ES. E UNICITA
	and the control of t
	VALE.

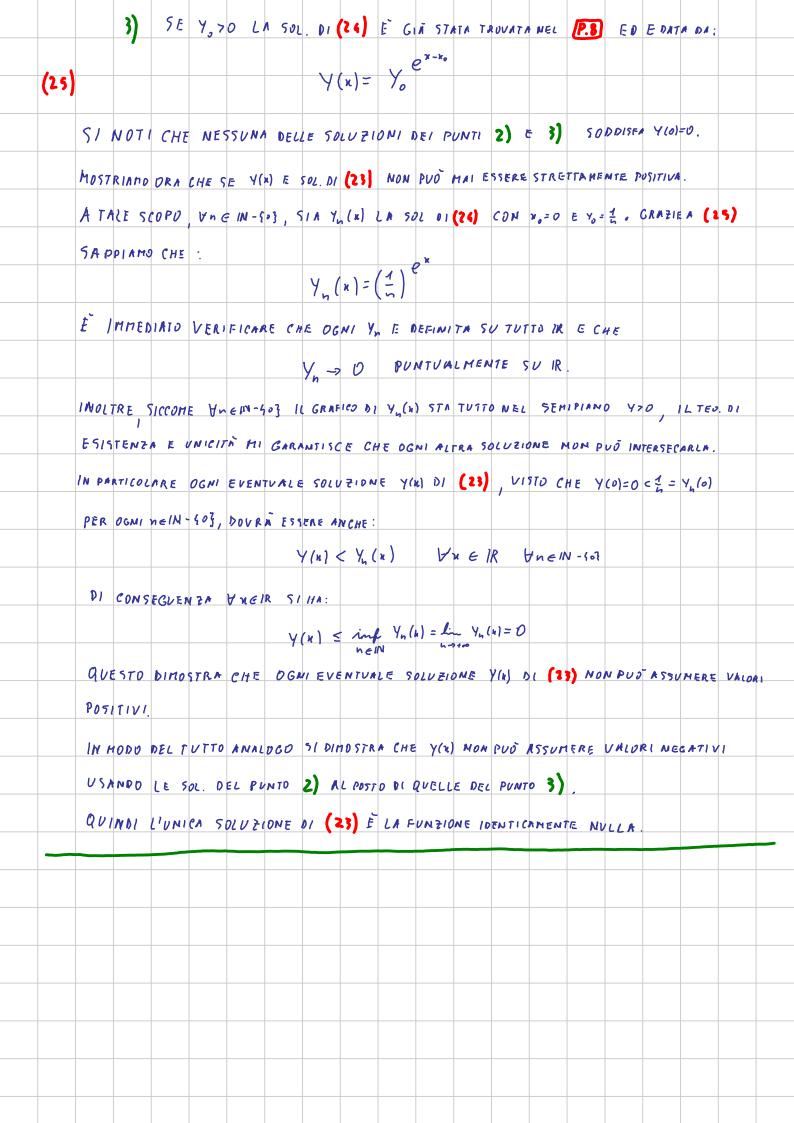




P. 7	TRI	VAR	E TU	TTE L	E 50	DLU ZI	DNI	ı Y	= Y										
Sve	LGIM	ENT	0																
				RIMA	PFR	21.20.	5100	OMF	E 1	INE AR	F O	1DGE N	Er l	DEI :	E° OR IN	IALE	Ln so	טובטטס) N/E
							7.00		5 6			00213			0,(0,				
		RAL	E E	;		y (n)	1. (A(m)		lx E	ıR								
(16)																			
	DOVE	A	() E	VNA	PRIMI	TIVA	01:	<u>1</u> -	PER	x >0	PREM	DIAMO	A(u)	: lu	, Qu	(ND1:			
							14	o lu	×	kх		k	e/R						
						Y(n))= K	•	=	KK			e ijt						
	QVII	ומע	PER	X 70,	LE	502071	IONI S	ONO 7	TUSTE	E 50L	ELE	SEMIR	RETTE	DEL	SEM	1PIAN	א פ	0,	
	Сне	PART	ONO	DALL'	DRIGA	NE.													
	IN M	000	ANAL	.0G0	LE S	5 OL. \$	PER X	<0 9	SUNO	TUTT	E 6 9	DUE L	E SE	HIRE	TTE C	HE DI	RTON	0	
	DALL	ORIC	INE	E ST	N O M	JEL SE	on (PIAD	и х	<0.										
P.8	TR	O VAR	E TV	TTE	LE 5	OLU Z	ואטו	חות א	1'= Y	lu y									
150	OLGII						0 64						2 1 .	V 7	100	01.50	E 0	E0	
	11 5	ECON	100 M	EMBRE) /†#	SENS	<i>U >U</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NSIE	rie ,	t - { (x,4) E 1	ur`	4,0 }	. (N	OLIK	- , 1		
	OGNI	(N , , K	(₀) ∈ A	, 10	L PB.	Di Ci	VCHY	•	(Y'	- 4 lm	. y								
									7 Y(x	(a) = Y ₀									
	500	DISFA	SEM	PRE L	E IPO	7891 4	DEL 75	0 01	ES.	E UN	CLTR	LOCALE	_ (1 00	N SECU	ENZI	+ 2 9	; OL.	
	DEL	L' EQ.	NON	P0 95	DNJ M	AI /NT	ERSECI	tr91,	Qvii	NDI S	€ TRÛ	v I A H) UN	A FAH	GUA	01 500	VZIOA	u e	
	1 C	vi Gr	A E I C Į	"co	PRONO	" זעז	ו ע ניוו	NSIEM	E A	TALE	FAMI	SLIA E	LILA	SIEM	E 01 7	UTTE	LE SOL	LV ZION	41,
	101	TA I	A 50	L (05	TANT	E Y. IX	121	PER	TUTT	E LE I	ALTRE	POSSE	o ser	IVER	E CHE	SODI)15FA	·n. o:	
							7(n)	e) Bn(Y(s1)	- = 1										
	C	IOE																	
							(ln/	ln (41	*1)()	= (x)								
	C	IOE.	:				0 1	0 /v	(m)	= X	+ C		C	⊊IR					
							in 1	in (7)	11		_								




						(4,71) [E TRI			Y 2 (4)	SIR	IEMPI	E TV	ון טזד	INSIE	IYE /	4 = { (w	· y) y >	17
						RETTA												,.
					E ZA F	(6)	N () () ()	15141	•									
	Qv	INDI	(, 0	N					k e ⁿ			10						
						У	(n) :	7 6			K €	IR						
	51	COP	RE 7	UST	0 11	SEM	IPIAN	ץ ט	'>0 .	QU	INDI	SONU	TUI	TE E	E SU	りしひき	NON	
NO	TA	, 12	. FAT	70	CHE	SE	Y(x)	E :	POLVZ	ONE	, 41	u CI+15	LE	SUE	TRASE	LATE	SONO	
	SOLV	710N	1,51	POT	EVA	GIÃ	INDO	VINA	RE D	AL F	A 77 O	CHE	AL.	II O ME	MBRO	DE	LLIEQ	VA 210
			•			MTE (
						SE		_ `										
			•			NE.											7	
												- 4	, , .					
			v'	(x) =	(Y (x	-w _o)) (= Y'		4									
								PE	RCHE	y(x) [5011	SIONE)					
	TUTT	D QUE	570	NON	FU NZ	ONA	SE	AL <i>III</i> °	MEMB	RO DE	il'ea	7U# 210	NE (OMPA	IRE E	SPLI	el TA A	ENTE
	LA																	
P. 9	TR	01/AP	F TU	TTF	/ F <	5 DLU 3	/i2 N I	DI V	1-0	Y to	W							
استا		UVIN	- 10			,,,,,	10141			-000								
LSVO	OLGII	MENT	0															
	TR	OVIAN	10 TV	יודב נ	E 50	DLU ZI	ו אט	IL C	או וע	TERVA	LO MA	22547	re di	DEFIN	IZION	E SI	TH IN (-17/1
	91	HA:								(")								
							У	(h).	- e ^{-y}	" to	и							
	CIO	E:																
							e 4(1) / Y (n) =	sin ?	1							
										Conx					SE .			
														ALLU	RA (05 x	20)	
	CID	E :							,			(L)	<i>I</i>		\sim			
	CIV	Ĕ`:					(e	Y(h) }	=	(hn (c	oru))	(
							(e	Y(h)	=	(ln (c	os n)	1					
		E: OE:										0 x x))						


	DA C	VI SE	CVE :	:					0 (0 1	<u> </u>						
(19)							Y(u) =	hn ((+	lu — Co	×)	C	e IR				
	PER	06	NI FIS	SATO	C IL	Domi	NIO DI	Y (n)	E`	(- II,	17) 9	E C 7	0 , M	ENTRE	SE	c < 0	PREND	о Сон
	INTE	RVALL	0 bi	DEFINI	FIONE	$\left(-\frac{5}{4}\right)$, -eno	cos e) OF	PURE	(arcen	ec, 1	$\left(\frac{T}{2}\right)$.					
	DRA	, A	L VAI	RIARE	DI	C E	2 ,	LA F	AMIGL	A DI	TUTTE	LE Y	(u) D	ATE I	DA ((9)	RIEMP	E
													1/40,					
							510											
										4 ln ((an No)	+ ln	(d Cox 11))				
	CHI	SOD	DISEA	OVV	IAMEI	47E	γ(x ₀) =	Υο.										
	aui	NDI	(1	9) R	COPE	E TUT	TA LA	STR	ISCI#	A of	QUINO	NO!	N C1 50	NO AL	TRE S	OLVZ.	IN A	
	A 91	/E970	PUN	O,PE	R RIE	MPIRI	LA	STRI	SCIA	A _k =	Sin	$r) \in lR$	$\left\{-\frac{\pi}{2}\right\}$	+417	(u < 1/2	+ker }	BAS	TA
							L TIF				<u> </u>							
							y(u -											
	CON	, \	/ (n)	DATE 1				2111										
								0	-0 P LL -									
	7 **						L V Z 10											
		•	υ'(x)	= (4	/ (y-k1)))=	Y'(u-	k17) =	e-Yl	u - ktr)	ten (n-kn) = e	-v(n) (on (H -	kn)=	e-vin	ton x
								لنر	në Yl	\perp	`							
									502 U 710									
_																		
P.10	TRU)VAR	E TU	TTE L	E 5	DLU Z	INOI	D I										
0)								V	/ - N	y ln '	Y 2							
								,		1 + X	4							
ISVO	DLGIM																	
													y=±1					
	INOLT	RE	OGNI	Yo #	0 h	A UN	INTO	RNO 1	NCVI	۴	E LI	PSCH	I TZLA	na,	QVI	MDI	D(20)	۱, (۲,
			ο,	IL PI	ROB.	D1 C1	VCHY			1 2	y la y	, ?						
	CON	Yo7		1					+	/ = -	7 7 31 9	-						
	CON	Y ₀ 7	,						۱ ۲									
	CON						IVME		2 1	/(v _o) =	Yo							
	HA L	/N.A	EVI	VA 50	LASE	OLV?	UNE	•					E RIEM	PIE [, 'IN	SIEME		

SVI	OL GIMENTO)
	NON SI RIESCE A TROVARE ESPLICITAMENTE LA Y(4), QUINDI RICAVIAMO LE INFORMAZIONE
	CHE CI SERVOND DIRETTAMENTE DA (21)
	INFO 1 FINCHE Y(L) ESISTE SOODISFA 1 < V(n) < 3.)
	INTATTI L'EQ. DIFF. PUO ESSERE RISCRITTA:
(22	$y' = x e^{x} nim ((y-1)(y-3))$
	DA CUI SEGUE SUBITO CHE CI SONO 2 SOL. COSTANTI Y (N)=1 E Y2 (N)=3.
	QUINDI VISTO CHE Y(4) VALE Z PER YOU E NON PUT MAI INTERSECARE ME
	Y, (h) ME Y, (h), FINCHE ESISTE RIMARRA SEMPRE TRA Y, (h) E Y, (h)
	INFOZ DETTO I=(a,b) L'INTERVALLO DI DEFINIZIONE DI Y(x), Y(x) CRESCE SU (a,0]
	E DECRESCE SU [0,6).
	BASTA OSSERVARE CHE IL TONEMBRO
	DI (22) E NEGATIVO MELLA ZUNA D Y7(M) 3
	E POSITIVO NELLA ZONA W.
	QUINDI, FINCHE Y(A) ESISTE,
	Y'(u) > 0 PER u (0 E Y'(u) < 0 $PER u > 0.$
	POSSIAMO A QUESTO PUNTO DIRE CHE: SUPY(n) = MAKY(n) = Y(o) = 2
	[NF0] b=+0
	SE PER ASSURDO FOSSE DEIR, GRAZIE ALLA MONOTUMIA DI Y(M), SI AUREBBE:
	$\lim_{\mathcal{H}\to b^{-}} Y(\mathcal{H}) = Y_{0} \in [1, 2]$
	PRESA ORA V(n) e C1 (b-5, b+6) SOLUZIONE DI:
	(y'= ne* m (y2-44+3)
	E DEFINITA:
	$\int Y(x) \qquad \forall \varepsilon \ x \in (a,b)$
	$\mathcal{N}(x) = \begin{cases} Y(x) & \text{se } x \in (a,b) \\ V(x) & \text{se } x \in [b,b+\delta] \end{cases}$
	MOSTRIANO CHE M(x) E SOL. DI (24) SU TUTTO (a, 6+5).
	FLUTIKIAND LITE M(x) E SUL. DI (24) 70 1010 (a, 648).

Problemi aggiuntivi per EXE 9

Risolvere i seguenti problemi di Cauchy:

$$\begin{cases} y' = (1 - 2e^{-y}) \cdot 2x \\ y(0) = y_0 \end{cases}$$
NEI CASI: $y_0 = \ln 2$, $y_0 = \ln 4$, $y_0 = 1$

$$2 \begin{cases} y' = (y - \frac{1}{y}) \times \\ y(0) = y_0 \end{cases}$$

$$\begin{cases} y' = \frac{1}{(1-x)e^{y}} \\ y(x_0) = 0 \end{cases} \qquad \text{NEI CASI: } x_0 = e+1, x_0 = 0$$

$$\begin{cases} Y' = \frac{x}{x^2 + 2x + 2} \\ Y(0) = Y_0 \end{cases}$$

$$\begin{cases} y' = \frac{x \sin^2 y}{x^2 + 2x + 2} \\ y(0) = y_0 \end{cases}$$
NET CAST: $y = -3\pi$

$$\begin{cases} y = \frac{\pi}{2} \\ y_0 = \frac{\pi}{2} \end{cases}$$
LUNCU
LUNCU

$$\begin{cases} y' = -\pi \cdot \frac{y^2 + 4}{(4 - x)^2} \\ y(x_0) = 4 \end{cases}$$
NEI CASI: $x_0 = 5$, $x_0 = \frac{9}{5}$

Rispondere alle seguenti domande:

- DETTA Y(N) LA SOLUZIONE DI 4 NEL CASO YO = 1 , SENZA TROVARE ESPCICITA MENTE Y(x) DIRE QUANTO VALGONO Lim Y(x) . TROVARE INOLTRE IL POL. DI TAYLOR DI ORDINE 2 DI YIN IN No O.

Analisi Matematica (II modulo) - Exe. 10

13	Maggio	2020	0 (14.	00-16	.00) -	docer	nte: P	rof. E	manue	ele Co	ıllegai	ri - U	nivers	ità di	Romo	Tor	Vergo	ıta

RISOLVERE I SEGUENTI PROB. DI CAVCHY:

$$\begin{cases} y' + \frac{1-3n^3}{2} & y = 3x \\ y(1) = -\frac{1+e}{e} & \end{cases}$$

$$\begin{cases} y' - 2y \ln x = 2x^{2x} \\ y(1) = y - \frac{3}{4}e^{2} \end{cases}$$

TROVARE LA SOL GENERALE DELLE SEGUENTI EQ.

Y(1) = 0

PER CIASCUMA DELLE SEGUENTI FUNZIONI TROVARE (SE ESISTE) UNICA LIMERRE OMOGENER A COOFF COSTANTI

REALL DI ORDINE MINIMO DI CUI SIA SOLUZIONE:

$$Y(x) = e^{2x} + e^{3x}$$

$$Y(x) = (x^2 + x) \cdot \cos x$$

13)
$$Y(h) = e^{h} Con 2h$$
 15) $Y(h) = e^{h} + Con 2h$

$$b(x) = e^{3x}$$
 $b(x) = \cos x$

$$b(x) = e^{x}$$
19 $b(x) = x^{3}$
20 $b(x) = 6$

RISOLVERE I SEGUENTI PROBLEMI DI CAUCHY:

$$\begin{cases} y'' - 2y' + y = \frac{e^x}{x} \\ y(1) = -e \\ y'(1) = -e \end{cases}$$

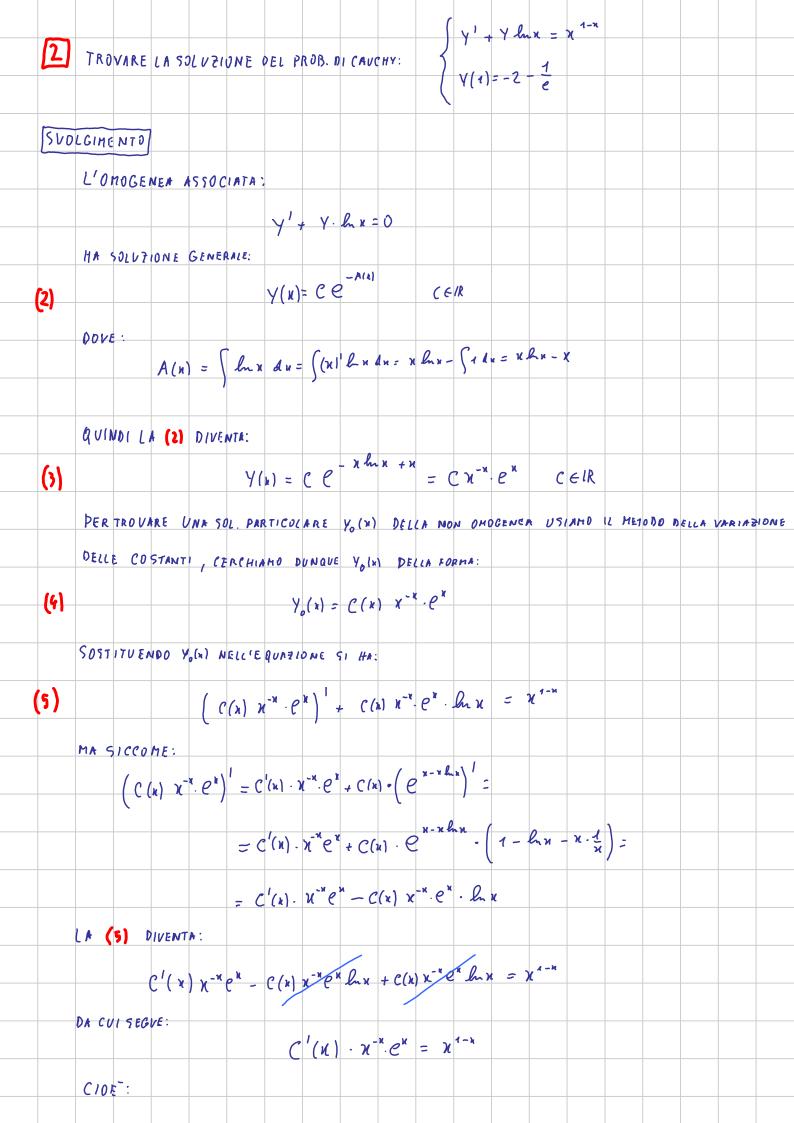
Analisi Matematica (II modulo)- Sim. 5

F	rova	simulo	ata su	: Elen	nenti (di Equ	aDiff.	- dod	cente:	Prof.	E. C	allega	ri - U	Iniv. d	i Rom	a Tor	Vergo	ıta

RISOLVERE | SECUENTI PROBLEMI DI CAVCHY

$$\begin{cases} y' = \frac{e^{x-y}}{2-e^x} \end{cases}$$

$$(1)^{2} = -2 - \frac{1}{e}$$


$$\begin{cases} y' = \frac{e^{x-y}}{2 - e^{x}} \\ y'' + y \ln x = x^{1-x} \\ y'' + 2y' + y = \frac{2 \ln x}{x e^{x}} \end{cases}$$

$$\begin{cases} y'' + 2y' + y = \frac{2 \ln x}{x e^{x}} \\ y'(1) = \frac{1}{e} \\ y''(1) = -\frac{2}{e} \end{cases}$$

NOTE PER L'AUTOUALUTAZIONE

Analisi Matematica (II modulo) - Sim. 5

	ova simu	lata su	ı: Elem	nenti o	di Equ	ıaDiff	do	cente	Prof	E. 0	Callega	ri - l	Jniv. c	li Rom	a Tor	Verg	ata
														_			<u>\</u>
_			-5			V	7			lacksquare			QUE	TA E	UNI	802	37
					6	V	6	JU					CHE	NON	HO RI	CONT	ROL
												1			NSN		
									(VIL-	e'	t - Y				E CO		
] •	TROVARE	LASC	LVZI	INE O	EL PI	ROB. D	I CAUC	HY: 4) 4, =	2 -	-en				ROR		
	TROVARE								7(0) = 1		>			10 11		PLC II
								\							1 56		
DLO	GIME NTO	ח												~			
		J															
V	1570 CH	E e-	‡ 0	PER	OGNI	y ∈ 11	₹, Υ	(A) E	SOLU	PIONE	DELL' [QUA	ONE	SEE	SOLD S	F:	
							(
									ľ								
					e'	Y(14) Y1	(n) =		O.K								
Cı	105							5 -	6								
CI	10E :						1			1	 						
					l (e) (A)	=	(- h	~/ex	-21)							
										<u> </u>							
C	CIOE																
1)					e	Y(h)	5	- lu	100	2	+ C		C	€IR			
•									1 -	1							
P	POICHE	L' Equi	ADIFF.	H# S	ENSO	5 DLD 1	PER Y	+ ln	2 E	IL	DATO	NIZI	LE DI	L PR	OB.DI	CAUCH	Y E
	NAY10	_	,												0 -	\	
-	DATO PEI	X N = (, ,	על א.	LU 210	ONE	ERCA	74 (I,Y	(u)]	DEVE I	*VER	I	(-0	o, en e	J .	
	QUINDI	2 A	(4)	PER	XZI	luz.	DIVI	NIA									
			1														
						e Y(n)		ln	2-	e*)	+C		C	EIR			
										'							
C	CLOE:						n		c _	ln (2-64)		(∈/R			
C	CLOE:					V(n)	= 1	n									
C	: : : : : : : : : : : : : : : : : : :					Y (n)	= L	n				,					
							= l	n (
	CLOE:	5 (A Y	(o)=1	, B150			= d	n (,					
		51A Y	(0)=1	BISO		CHE:						<i>,</i>					
		5 (A Y	(o)=1	, 3150		CHE:		(c				, 					
P	PERCHE			•	GNA	CHE:	: ln	(c									
P				•	GNA	CHE:	: ln	(c									
P	PERCHE			•	GNA A SO	CHE: 1 =	· ln	(C	- ln	(2-	e°))						
P	PERCHE	2=e.	QUIA	DI L	GNA 6	CHE: 1 = 1. CE	RCATI	(c (e	- ln - ln	(2-	e°)) *))						

QUINDI BASTA PREMORRE:

$$C(x) = \int x e^{-x} (x - e^{-x})^{2} dx = -xe^{-x}, \quad \int e^{-x} = -(x - e^{-x}) e^{-x}$$
QUINDI LA SOL PARTICOLARE CERCHA (6) e^{-x} :
$$V_{0}(x) = -(x - e^{-x})^{2} - x - x - e^{-x}, \quad \int e^{-x} = -(x - e^{-x}) e^{-x}$$
QUINDI LA SOL GENERALE DELIC'EQUA PIONE e^{-x}

$$V_{0}(x) = -(x - e^{-x}) - x - x - e^{-x}, \quad \int e^{-x} = -(x - e^{-x}) e^{-x}$$
PER SEDDI SHARE IL DATO INTERNALE VICT $z = 2 - \frac{e}{e}$, BUSDOMA CHE SIA:
$$-2 - \frac{d}{e} = -(4 - e^{-x})^{2} + C - e^{-x} - e^{-x}$$
DA CUI SEQUE $e^{-x} = -\frac{1}{e}$ QUINDI LA TOL DEL PEDA DI COUCHY e^{-x} :
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

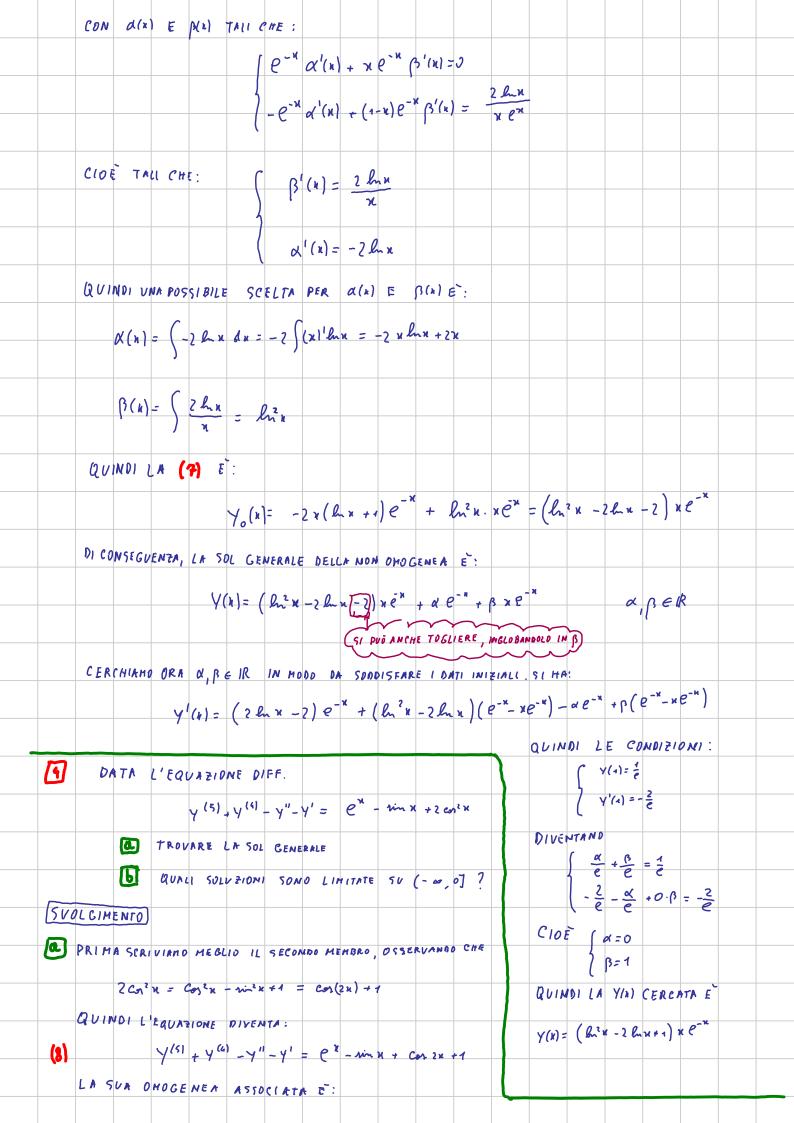
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

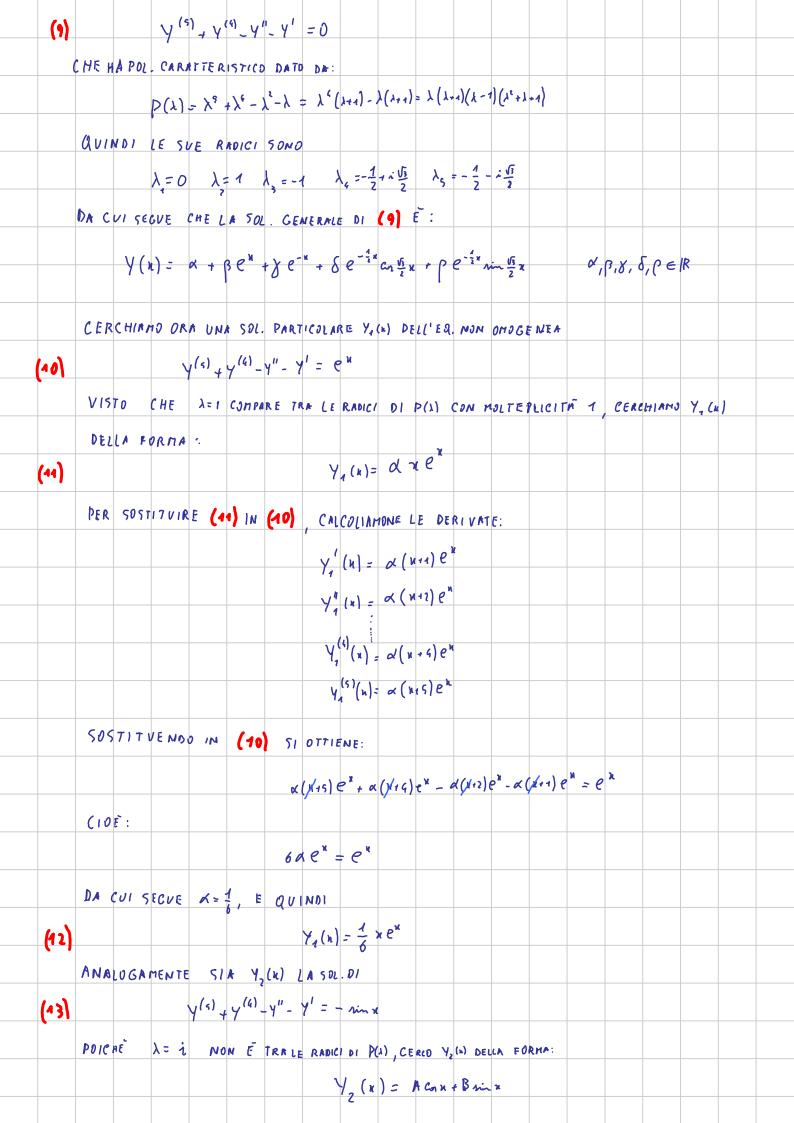
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

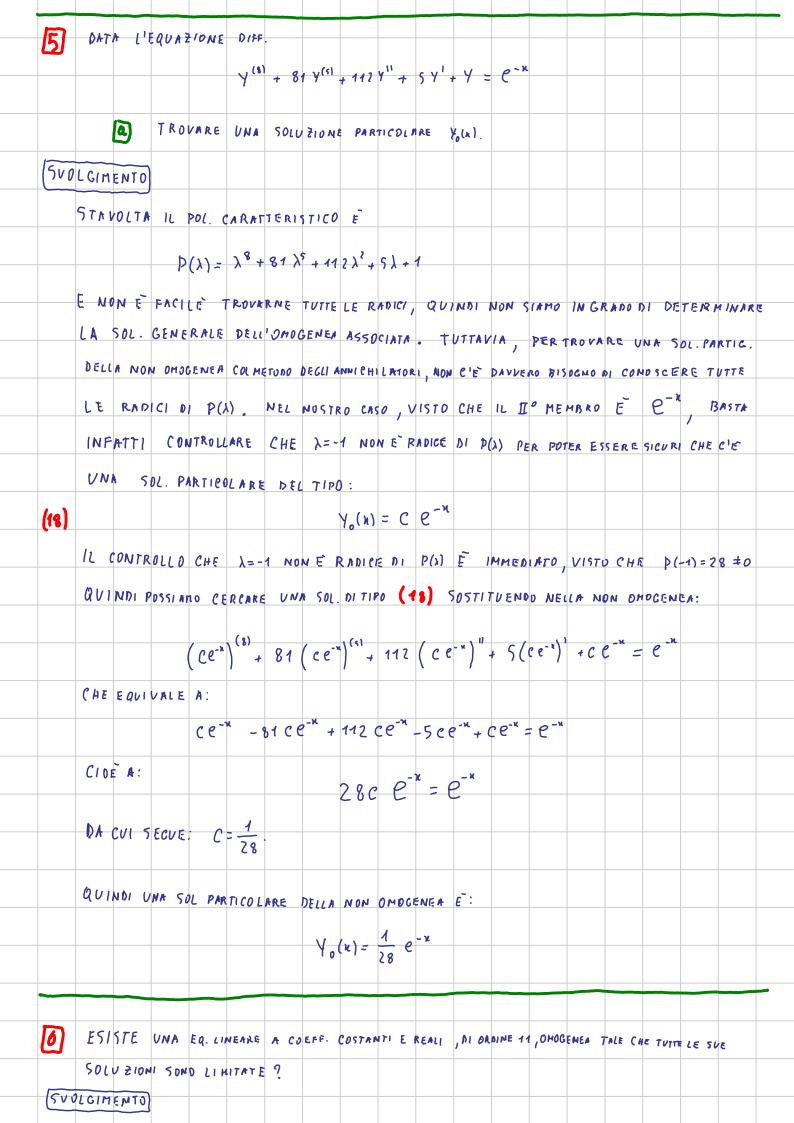
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

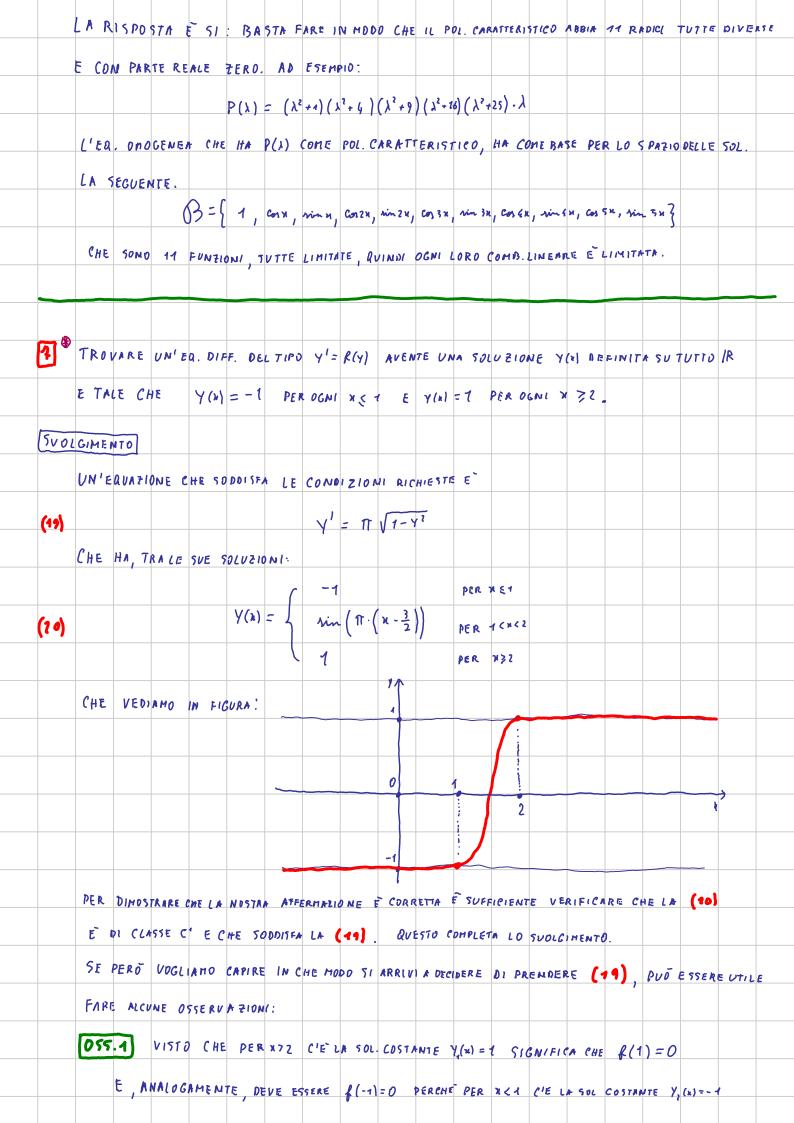

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

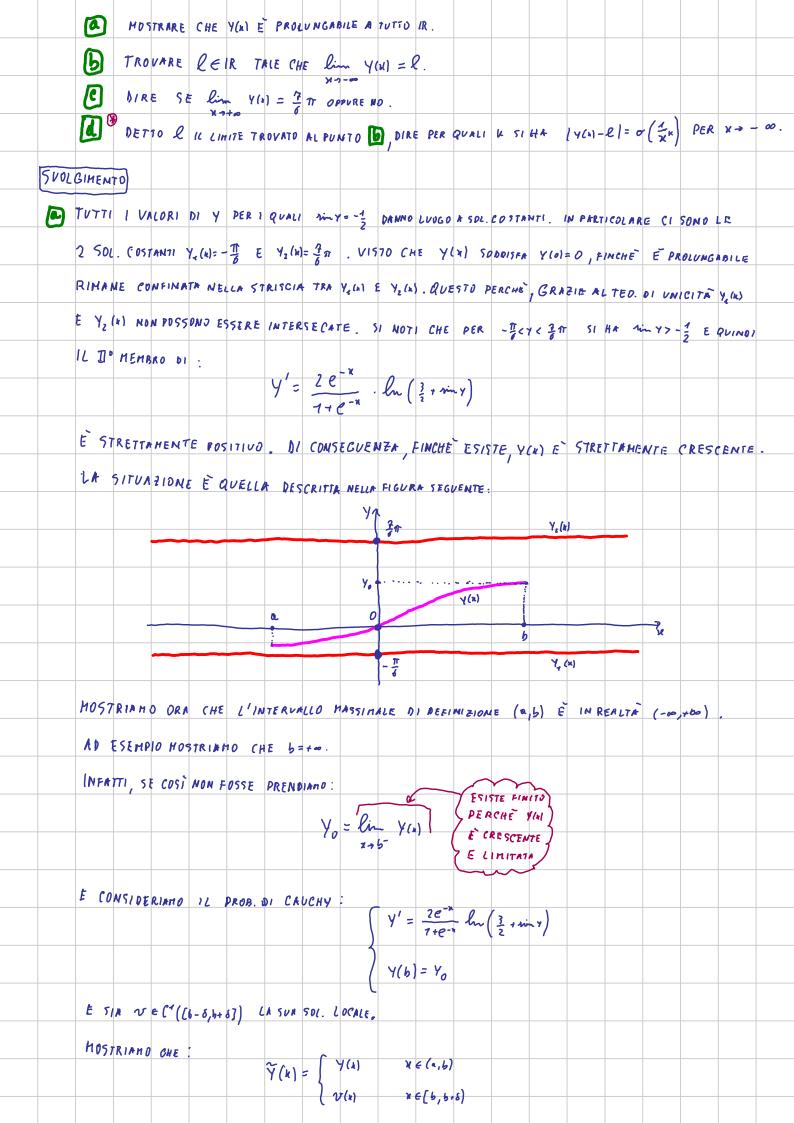

$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

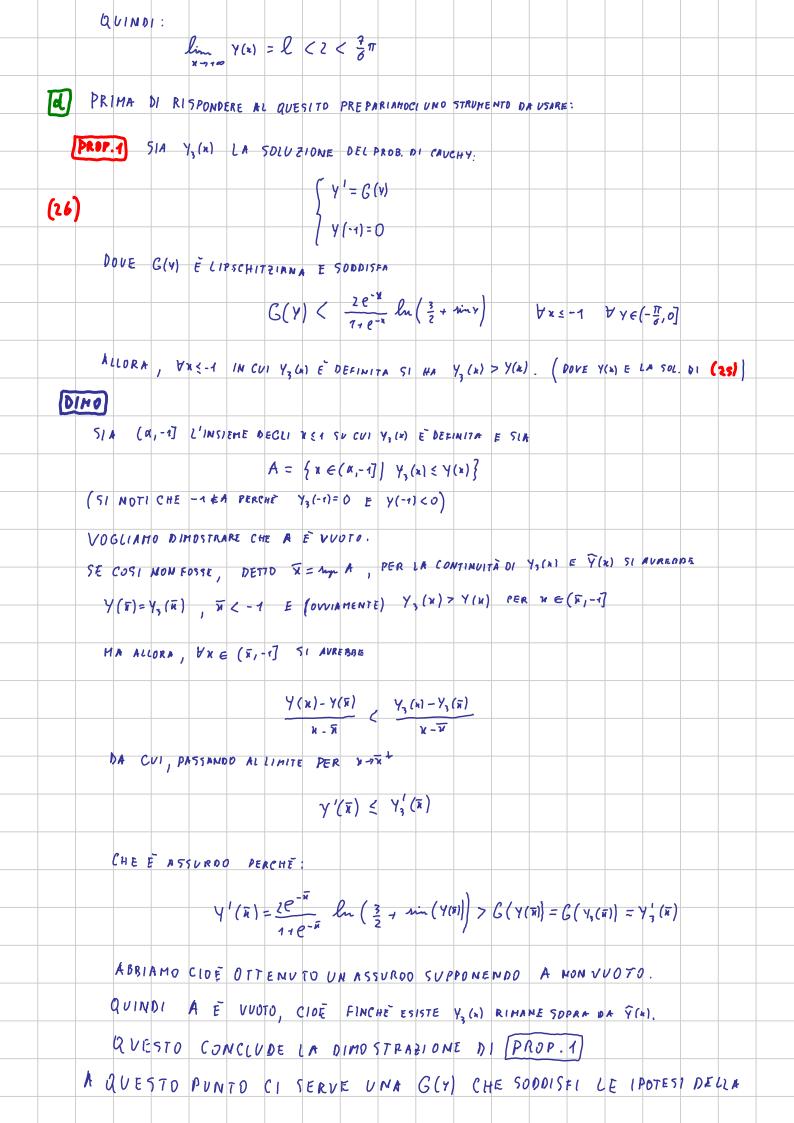
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$

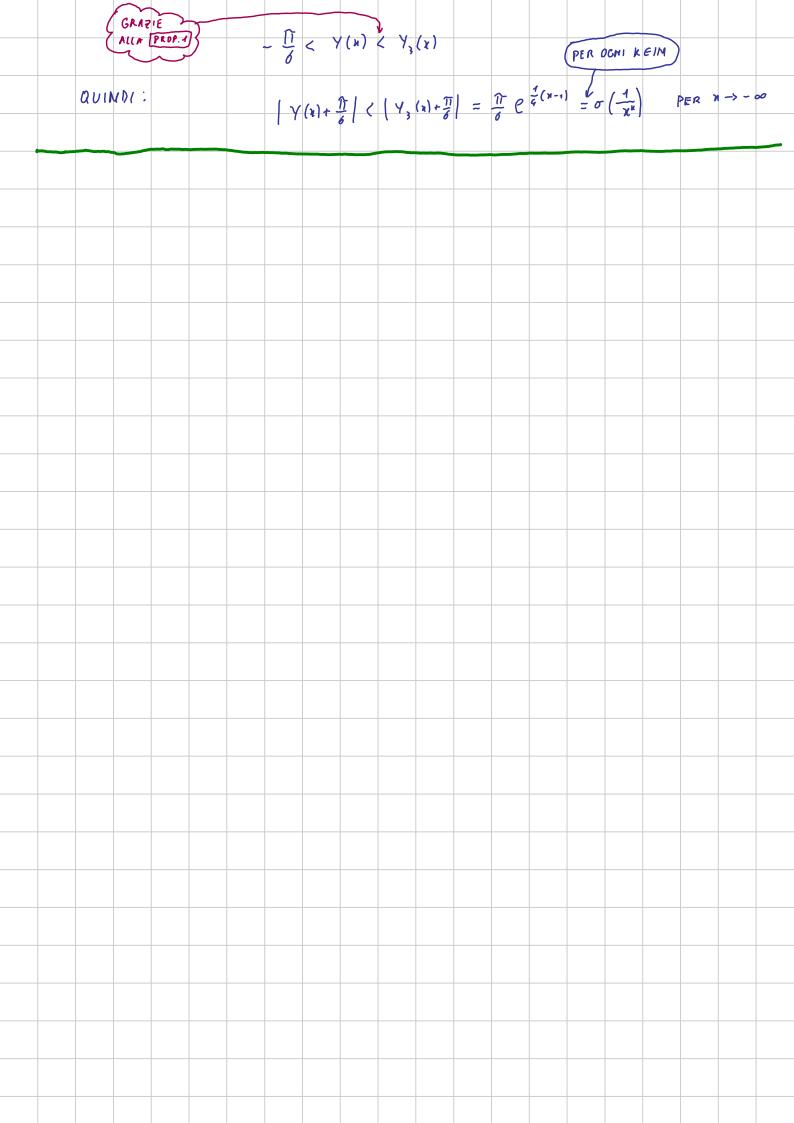
$$V(x) = -(x - e^{-x}) + C - e^{-x} - e^{-x}$$


$$V(x) = -(x - e^{-x}) + C - e$$



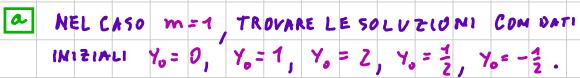

	ABBIAMO. Y'(k) = -Amik+Book
	$\frac{\sqrt{2}(x) = -A \cos x - B \sin x}{2}$
	$y_{m(x)}^{m} = A \gamma_{mx} - B C_{nx}$
	$V_{2}^{(6)}(\pi) = A \cos x + B \sin x = Y_{2}(\pi)$
	$\gamma_{(s)}^{(s)}(*) = \gamma_{(s)}^{(s)}$
	QVINOI SOSTITUENDO IN (18) Y (5) E -Y' SI CANCELLAND E SI OSTIENE:
	A Con u + B sin n + A Cos x + B sin x = - sin x
	C10E :
	2 A Cosn + 28 sin n = - sin n
	DA CUI SEGVE A= O E B= - 1/2, QVINOI:
(16)	$Y_2(n) = -\frac{4}{2} \sin n$
	CERCHIAMO DRE LA SOL. PARTICOLARE Y3(x) 01:
	y(x) + y'(4) - y'' - y' = Cos(2x)
(15)	
	SICCOME X= 21 NON E RADICE DI P(X), CERCO Y3(1) DELLA FORMA:
	Y3(x) = A con 2x + 13 m 2 x
	ABBIAMO:
	$y_3'(x) = -2 A m 2 x + 2 B cos 2 x$
	$Y_3^{11}(n) = -4A Con 7n - 4B sin 2n = -4 Y_3(n)$
	$\forall \mathbf{y}'''(\mathbf{x}) = -4 \forall \mathbf{y}'(\mathbf{x})$
	$Y_3^{(4)}(n) = -4 Y_3^{(1)}(n) = -46 Y_3(n)$
	$V_{3}^{(s)}(u) = 16 \text{ Y}_{3}^{1}(u)$
	QUINDI, SOSTITUENDO IN (45), SI HA:
	-32 A min 2x +32 B Con 2x + 16 A Con 2x + 16 B min 2x + 4 A Con 2x + 9 B min 2x + 2 A min 7x - 2 B Con 2x = Con 2x
	CIOÈ:
	$(-30A + 20B) \sin 2x + (30B + 20A) \cos 2x = \cos 2x$
	DA CUI SECUE :
	$\int -30 A + 20 B = 0$
	$\frac{1}{308+20A}=1$
	CIOÈ A = 1 E B = 3 E DI CONSEGUENZA:
	CIUC A- 65 BO L, DI CUNS RGUENZA:




Ø	5.2)	CI S	ERVE	CHE	PER	y=-1	£ Y=	1 NON	VALGA	16 TE	DREMA	DI UNI(ITÀ I	erché	DEVI	E E19E	Rei
	UNA		HONE (
			PELLA														
			44415							7.							
D																	
KIA			ACM DE			LE P	ROPRIE	TA									
			(4) = 0 =				2011/2										
			MONE														
LA	PIŪ	SEMPL	ICE FU	M014W	E CH	E 50	D015F	n (a)	Ĕ	f(y):	= Y ² -	1 n	a SE	VOGLI	tno C	HE 50	DD 15#1
A	4CHE	(6)	DOBBIAN	O FAR	RE IN I	M 0 D O	CHE, A	MAND	D INTE	RSECI	+ L ¹ R	SSE U	/ AB	RIR PE	NDEMS	# INFI	NITA
P	ER QU	ESTO	PREN	DIAMO	f	4) = \	y?	1	CHE	, 5E	-1	८५८ १	51	SCRIV	e fl	y)= V	1 - y ²
A	QUES	FTO PV	'NTO , C	ERCAI	ND0	LE S	0LV 710	ONI	DI								
(21)						y1=	V1-	- As									
	1ELLA	ZONA	-1 <						אדדעד י	E 5	OLE L	E TRA	SLATE	0R122	DMTAL	LDU:	
					,												
(11)						У(ж)= 1	rin U		Ή	16 (-11/2	声)					
	41 AC	CORGO	ALLOR	A (HE	LE TR	*SL AT	E DI	(22)	VAA	ino "a	U#SI"	BENE	· PFA	PASSA	RE DA	- ผูบอา
			TA 1 ,														
			'												25.7.	,	
			CHE														
			SERVI			/ AL	PUSTO	DI (22] , L	e sol	V ZI UN	IL FOS	SERU T	VETE	£ 50L	E LE	
	トイフレイ	TIE O) R1 ZZ 01	VTALI													
(53)						У(ж	= 1	in ITI	(ν	€ (- 1 2	, <u>1</u>					
	VINDI	DOBBIAN	MO AGG	U STAR	E L'					00 SE	GVENTO	:					
(24)						Α,	= 17	V 1 -	Yt								
Cı	IE HA	APPUN	TO (23	Cor	ne SOL(J ZIONE											
a	UESTO	SPIE	GA IL	ноті	YO DE	LL# 50	CELTH	(11)									
8 1	14 4	(N) L	A 50L	. DE	L PRO	B . D1	CAUCI	ΗY	y'	= 2	e-*	ln / 3	+ sin	у \			
(25)									410	11	e	/ 2	•	'			

	RISOLVE LIEQ. DIFF. SU TUTTO (a, b+8).
	A TALE SCOPO, VISTO CHE SO GIÀ CHE Y(NI È SOL SU (96) E V(N SU (6-6,6+8), BASTA VERIFICARE CHE Y(N)
	E CONTINUA E DERIVABILE ANCHE NEL DUNTO DI RACCORDO N=6. 51 HA:
	lim Y(A) = Y = V(b) QUINDI Y(x) & CONTINUA PER N = b.
	$\lim_{N \to b^{-}} Y^{1}(x) = \lim_{N \to b^{-}} \frac{2e^{-x}}{1+e^{-x}} \ln \left(\frac{3}{2} + \sin Y(b) \right) = \frac{2e^{-b}}{1+e^{-b}} \cdot \ln \left(\frac{3}{2} + \sin Y_{0} \right) = \frac{2e^{-b}}{1+e^{-b}} \ln \left(\frac{3}{2} + \sin (v(b)) \right) = v'(b)$
	176-10 1+
	QUINDI Y(x) E ANCHE DERIVABILE PER N=b, EQUINDI Y(x) E UN PROLUMBAMENTO DI Y(x), IN CONTRASTO
	COL FATTO CHE (Q, L), Y(k) SIA SOL. MASSIMALE.
	QUINDI E ASSURDO SUPPORRE CHE 6 NON SIA 400.
	ANALOGAMENTE SI MOSTRA CHE &= -0.
/n	QUINDI Y(k) E DEFINITA SU TUTTO IR.
Ь	OSSERVIANO DRA CHE, GRAZIE ALLA MONOTONIA DI Y(A), ESISTE IL LIMITE
	$\lim_{x \to -\infty} Y(x) = \ell \in [-\frac{\pi}{6}, o]$
	VOGLIANO MOSTRARE CHE & = - # .
	INFATTI, SE COSÍ MON FOSSE, SI AVREBBE: SUPPONENDO & 4 - 17
	$\lim_{N \to -\infty} Y'(x) = \lim_{N \to -\infty} \frac{2e^{-x}}{11e^{-x}} \ln \left(\frac{3}{2} + \min (e) \right) = 2 \cdot \ln \left(\frac{3}{2} + \min (e) \right) > 0$
	DI CONSEGUENZA ESISTEREBBERO NO CO E UN >0 TALI CHE Y'(x) > M PER X & X.
	QVINDI, BX < Y. SI AVREBBE
	$Y(x) = Y(x_0) + Y(x) - Y(x_0) = Y(x_0) \rightarrow \begin{cases} \frac{1}{N} y'(t) dt = Y(x_0) - \begin{cases} \frac{1}{N} y'(t) dt \leq Y(x_0) - \begin{cases} \frac{1}{N} y'(t) dt \leq Y(x_0) - \frac{1}{N} y'(t) dt \end{cases}$
	DA CUI SECUIREBBE
	lin Y(x) < lin (Y(x) - m (x,-x)) = -00
	CHE E ASSURDO VISTO CHE Y(4)> - T VN CIR
	QUINDI E ASSURDO SUPPORRE L 7-11.
	INVECE lim Y(n) CHE PURE ESISTE GRAZIE ALLA MONOTO NIN DI Y(n), NON VALE 37.
	INFATTI OSSERVIAMO CHE, WWEJR, SI HA:
	$V'(n) = \frac{2e^{-x}}{1+e^{-x}} \cdot \ln\left(\frac{3}{2} + \sin x\right) \leq \frac{2e^{-x}}{1+e^{-x}} \cdot \ln\left(\frac{3}{2} + 1\right) \leq \frac{2e^{-x}}{1+e^{-x}} \cdot \ln e = \frac{2e^{-x}}{1+e^{-x}} \leq 2e^{-x}$
	AUINDI VX > 0 51 HA
	$Y(x) = Y(x) - 0 = Y(x) - Y(0) = \int_{0}^{x} Y'(t) dt < \int_{0}^{x} 2e^{-t} dt = 2(-e^{-x} + e^{0}) = 2(1 - e^{-x}) < 2$

Eq. a Variabili Separabili Sim 3



1 ora (parte standard) + 2 ore (parte facoltativa)

1

DATO IL PR. DI CAUCHY
$$y' = \left(\frac{y^2 - y}{x^2 - x}\right)^m$$

$$y(2) = y_0$$

- b NEL CASO m=3 DIRE SE LA SOLUZIONE CON DATO INIZIALE YOU E PROLUMENBILE FIND A +0.
- TATIVO C NEL CASO M=3 STABILIRE PER QUALI DATI INIZIALI YO LA SOLUZIONE E PROLUNGABILE FINO A fo.
- DATO IL PR. DI CAUCHY

$$\begin{cases} y' = \frac{1 - e^{y}}{e^{y}} \cdot \left(\frac{1}{1 + x^{t}}\right)^{d} \\ Y(0) = Y_{0} \end{cases}$$

MEL CASO X=1 TROVARE LE SOLUZIONI CON DATI INIZIAU

b NEL CASO & = 1 MOSTRARE CHE LA SOLUZIONE CON DATO INIZIALE YOF 1 E PROLUNGABILE FINO A + 00

FACOL TATIVO

C DETTA Y(x) LA SOLUZIONE DEL PUNTO b, MOSTRARE CHE Y(x) - 0 PER X - + - E STIMARNE L'ORDINE DI INFINITESINO.

Soluzioni

- 1 a PER m=1 IL P. DI CAUCHY DIVENTA:
- $\begin{cases} y' = \frac{y^2 y}{x^2 x} \\ y(z) = y_0 \end{cases}$ (1)

L'APERTO DI IR CHE CONTIENE I GRAFICI DELLE SUL RICHIESTE E:

$$\Omega = \left\{ (x,y) \in |R^2 \mid x > 1 \right\}$$

PERCHE L'EQUAZIONE NON E DEFINITA PER X = D E X = 7 E , SICCOME

IL DATO INIZIALE VIENE DATO PER X.= 2, DELLE TRE REGIONI

XCO, OCXCT E X71 PRENDIANO LA TERRA.

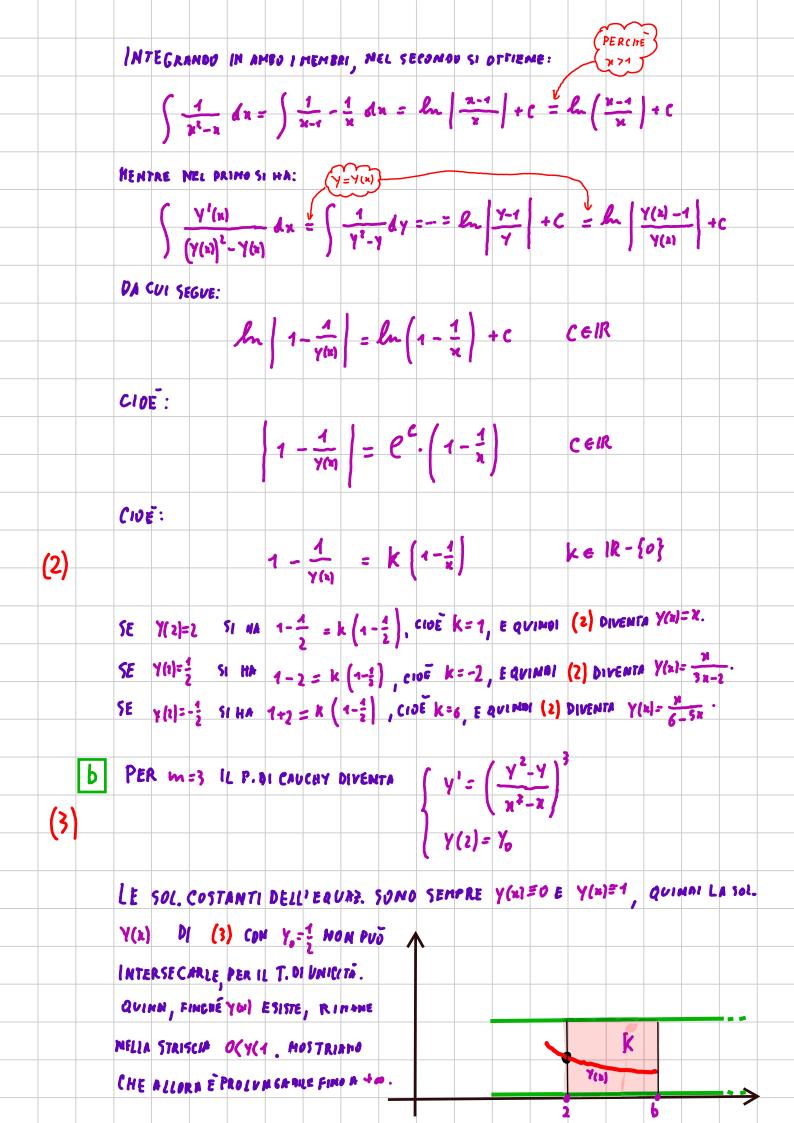
LE SOLUZIONI CHE TROVERENO SONO

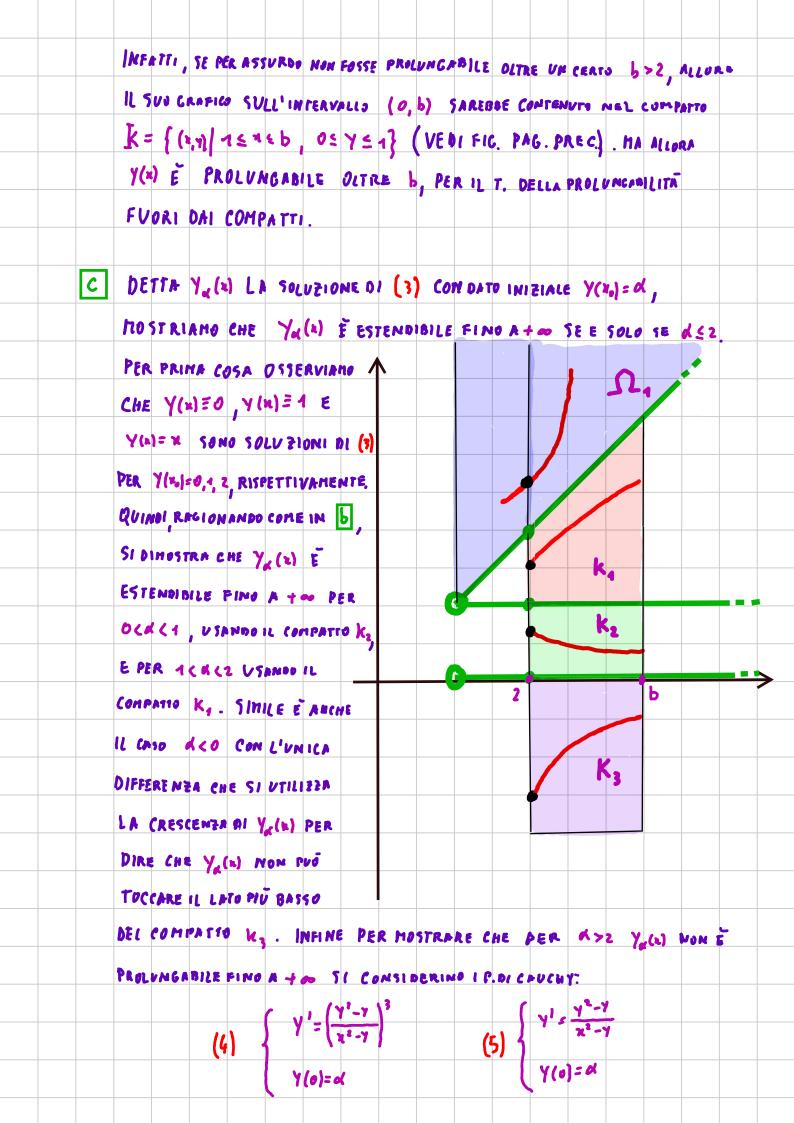
PER
$$y_0 = \frac{4}{2}$$
 $y(x) = \frac{x}{3x-2}$ SULL'INTERVALLO (1,+0)

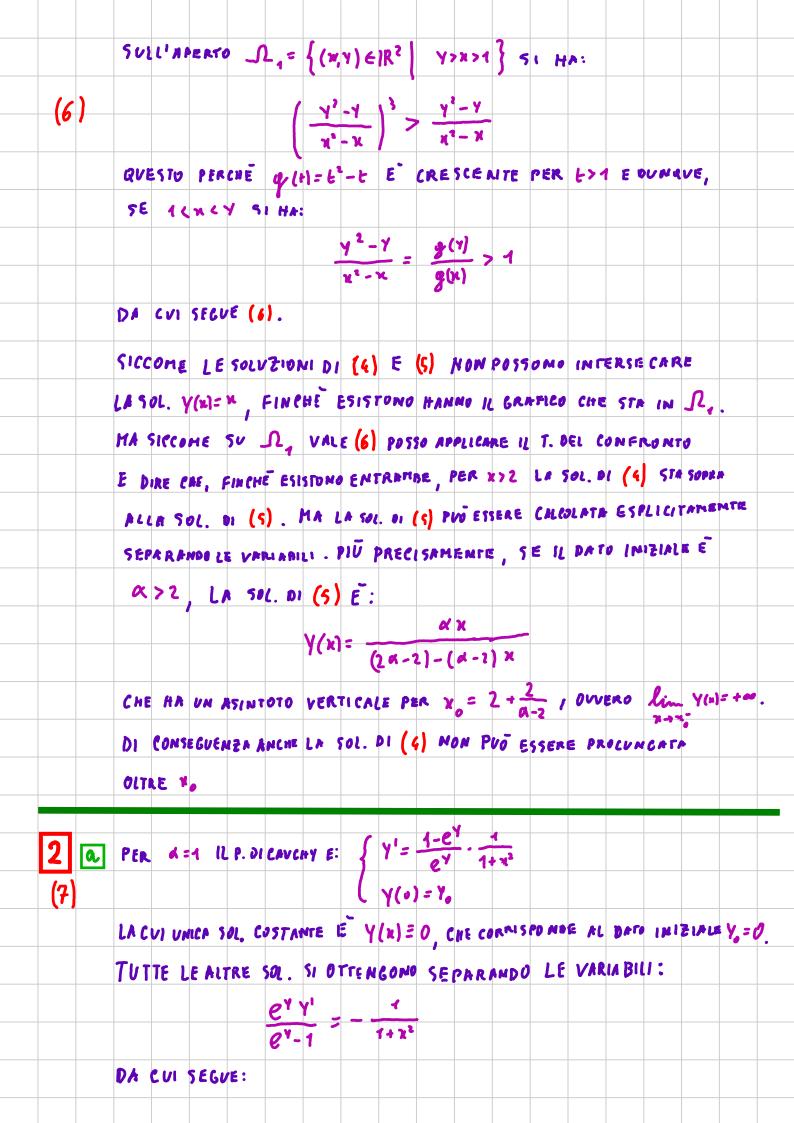
PER
$$y_0 = -\frac{4}{2}$$
, $y(x) = \frac{x}{6-5x}$ SULL'INTERVALLO $(\frac{6}{5}, +\infty)$

NELLA FIGURA A FIANCO SONO

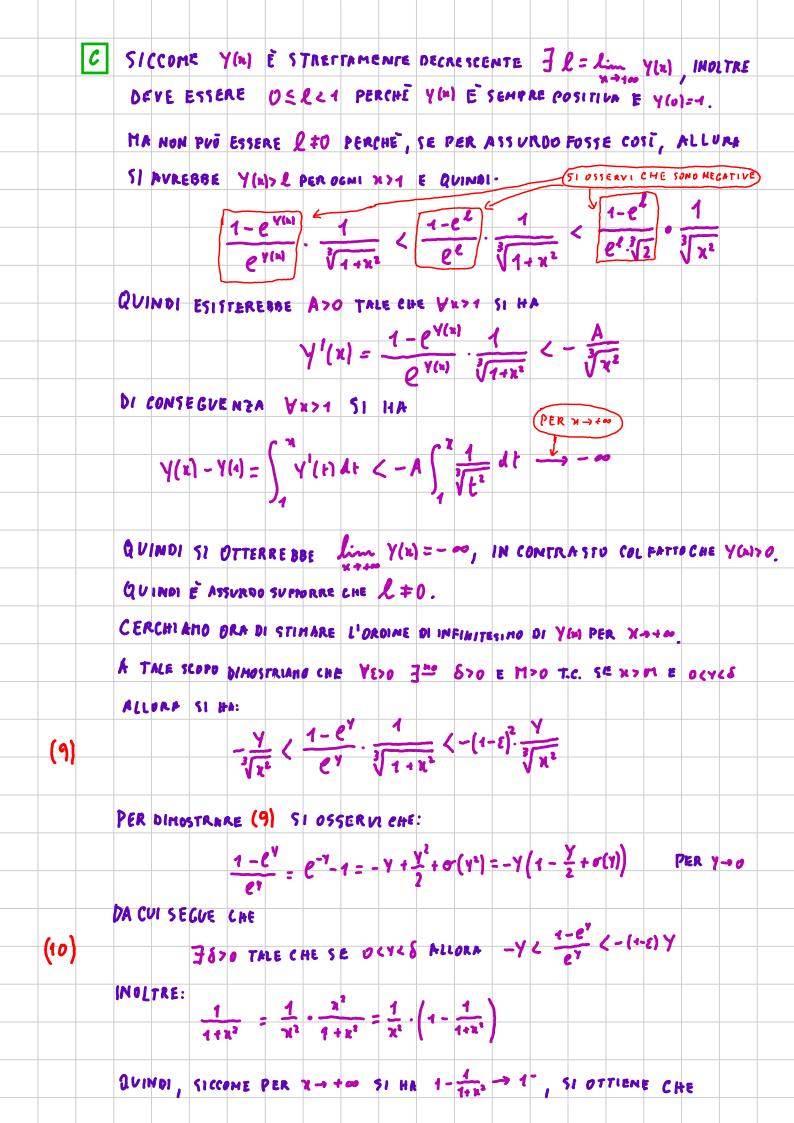
RATFIGURATI I LORO GRAFICI.


QUELLE CON DATI INIZIALI Y = 0 E Y =1


CORRISPONDONO PLLE SOL. CUSTANTI.


LE ALTRE SI TROVAMO SEPARANOO

LE VARIABILI. SI HA:


$$\frac{\gamma'(x)}{\gamma^2(x)-\gamma(x)} = \frac{1}{\chi^2-x}$$

								\										
					ln	ey	⁽⁴⁾ – 1		= (.	- ar	eton	x)						
	CIO	۳.		1				1										
	CIV	•			ln	o YI	k)	1 =	- 0	netu	ж -	+ C		Co	N	CE	IR	
	Ain	ERD			•													
	000	ENU	1		P	Y (M)		11+	ec).	e-	arci	an X		Car	• (: E 11	•	
	Com	SAU	1/41 5						\									
(8)	CHE	CUV	VALE	W;	•	/(z)	= L		1+	kle	-arc	lan X)	Co	n h	+0		
(0)														<u> </u>	-4	2000		
					1 BI										'''	QUII		
	LA	(8)	DIVEN	TA:	Υ(x)= .	ln (1 1	· (e	-1) e	- or	chan 2						
					PER 0													
					2 Y(k= ¿	- 1,	PER	610	
	LA	(8)	IVEN	TA:	V1.	.) =	lu (1 -	(4-	() e	- 01	etan s)					
	Chr	ا حم	SEIN	1 T B	PER													
6	51.	A >	(m)	LA	SOL.	DI	J,	y'; 3	et .	V=1	42							
							ι,	y (o) =	1									
	SI	NOT	l Che	16	2° MEn	BRO	DELL	Eav	12. Ë	NE	alive	SE	Y >0	E	PUSI 1	טעוי	SE YO	.
	No	.TRE	LA '	SIL.	COSTA	NIE	E AN	CURA	LA F	VN ZIC	2NE	DEN	TIEM	MEN	re /	ULLA		
	bi e	CONS	EGVE	NZP	FIM	(HE	Y(*)	E	DEFIN	ITA ,	u.	SVO	GRAF	100	RIMA	NE	SOPR	
					VINOI					_								
					GRIZ													
					LA C												•	
					NON F													
					REBRE								· •					_
					CORE													'
		·						46	V (6/11)		70-1 17	W. 50F	·-#17[, Y((4) E	rkol	UN G	かないしを
	UL	IRE	0 (M750	roo).													

(11)		3 11	>0	TALE	CHE	SE .	x 7 M	ALL	RA	(1	- E) · ;	1_	3/-	1 + x ²	ر اد عا	=	
	Сан			(10)								X	V		V	X.	
												0-0					
											100	707	N AM	PRE	NUE	KE X	L > M
				13×													
							DERE	CHE	75	>0	ESIS	TONG	δ>	0, 1	1>0	Eã	7 M
	TAL	1 CHI	E SU	LL' IN	SIEM					1		•		7			
						7	4= {	[4,4]	EIR ²	0	(46	01	אלא	3			
	VA	le l	A (9) 1	E IN	OLTR	le.	PER	<u>አ</u> ኤንቫ	S	Co	NTIE	SE IL	SRAFIC	O DI	Y(1)	
	ORI	, DE	TT 0	7 =	fü	, c	ONSI	DERIA	MO 1	TRE	P. 61	CAV	CHY:				
		ſ		Y				4	-e ^v	3/1	_		ſ			cle	Y
	(12)	Y	-	17.		hs)	1]; <u>-</u>	ex	11.	X2	14	(4)	4 =	-(1	61	VX2
	(12)) Y(x)=7	Ī		(,,1	1	(E) =	ÿ				[]	Y(2) = Ÿ		
														I SI TI			
											rr((ET CA		. 74 #1	y /	F 14.8	
	レヒ	י שני	71	(m) D1	(14)	3/-	2 (X) - 3.	D1 (11	10	4U:				* 3/=		12	3/~
			4,0	x) = \	163	ô • (3√ 2	Z.		Y2(1	1=1	j . e	3(1-E	}	e 31	7-8)	٧^
	la c																
								l PPL 1	CARE	IL T.	DEL	CON	FRON	10 E	DIR	E CHE	
	PEF	061	VI 7	スフズ	51	WA:											
							1,12) <	/ (2)	< Y ₂ (n)						
							•										
	DA	CUI	SEGU	E CI	re (ER	X -> ·	t eo	YGI	VA A	750	O PI	V I	rppi o	ME	MIB	
	DI	OGNI	FVN	ZIONE	DEL	TIPE	y	(4) =	k	e - 21	* C	ON	λ < 3	Ma	NU	N	
	PI	RAI) Dan	emte	DI	h(×) :	e-3	VX.								
												1		1			

Equazioni Differenziali

Sim 4

(Tempo di svolgimento: 3 ore)

1 DATO IL P. DI CAVCHY $\{Y(0) = \frac{1}{2} \}$ SIA Y(x) LA SUA SOLUZIONE. MOSTRARE CHE Y(x) F PROLUNGABILE IN AVANTI FIND A + 00 E CHE

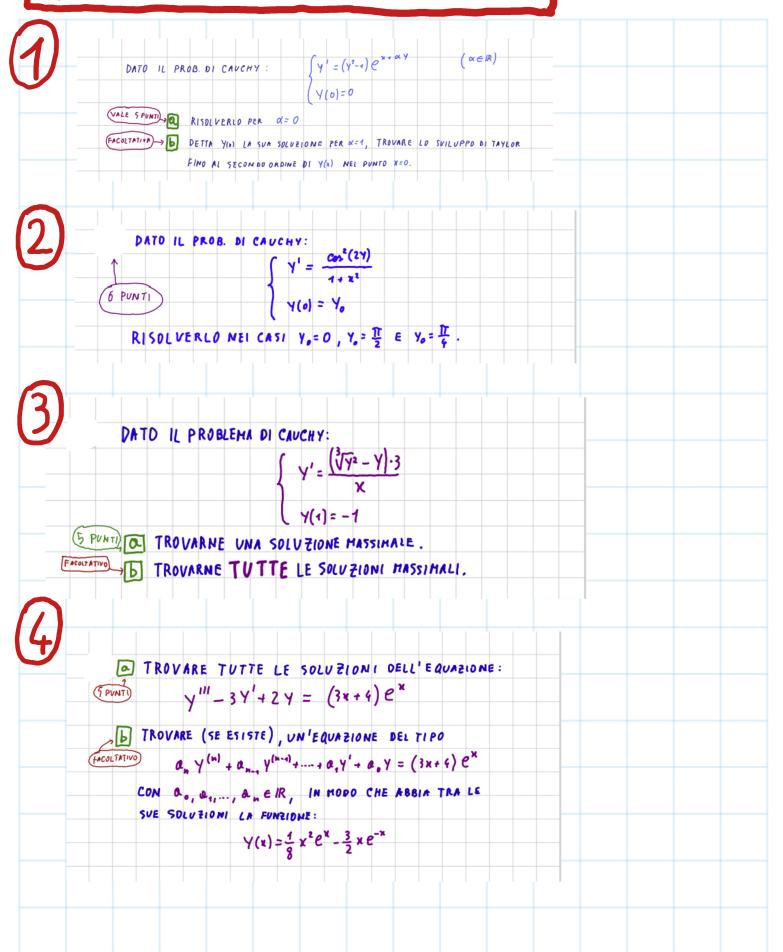
E INFINITESIMA PER X ++ +0 . (PER FARLO, LO STUDENTE QUÒ, A SUA DISCREZIONE, RICORRERE AN UNO STUDIO QUALITATIVO OPPURE TROVARE

ESPLICITAMENTE Y(K).

- 2 DATA L'EQUAZIONE Y' = (Y2+m(Y-1) +1) . 1+x2
 - a MEL CASO M=0 TROVARETUTTE SOL. E DIRE QUALI SONO RETTE.

b NEL CASO MET DIRE QUALI, TRA LE SOLUZIONI CHE INTERSECANO IL SEMI ASSE POSITIVO DELLE Y SOMO PROLUN GABILI FINO A + 00.

- 3 DATO L'OPERATURE Z = D'+20+303+302+20+I, PER CIASCUNA DELLE SEGUENTI CONDIZIONI, TROVARE TUTTE LE Y(E) E ("(IR) CHE LE SODDISFANO:


 - [a] Z(Y)=0 E $\lim_{x\to 2\pi} Y(x)=0$. [b] $Z(Y)=e^{-2x}$ E $\lim_{x\to 1\pi} Y(x)=0$.
- DATA L'EQUAZIONE DIFF. Y (4) + 27" + 6 7" + 5 7 + 64 = x2
 - OL TROVARNE UNA SOL PARTICULARE.

TROVARNE TUTTE LE SOL. Y(x) TALI CHE lim Y(x)=+00. FACOL TATIVO

RISOLVERE (L. P. DI CAUCHY $\begin{cases} Y'' + 2Y' + Y = e^{-x} \cdot \ln x \\ Y(1) = -\frac{3}{4e}, \quad Y'(1) = -\frac{4}{4e} \end{cases}$

(Verrà svolto a lezione mercoledì)

QUESITI PRESI DALLE PROVE SCRITTE

7/	DATA L'EQUAZIONE DIFFERENZIALE:	
	*) Y"-3Y'+2Y=10 cn x +ex	
<u> </u>		
	TROVARE TUTTE LE SUE SOLUZIONI	
-	B TRA TUTTE LE EQ. DIFF. OMOGENEE A COEFF. COSTANTI REALI	
	IL CUI INSIEME DELLE SOLUZIONI CONTIENE QUELLO DI (*)	
	TROVARE QUELLA DI ORDINE MINIMO,	
7		
61	SI CONSIDERI IL PROBLEMA DI CAUCHY:	
	$\begin{cases} y' = y Y^2 \\ y(x_0) = y_0 \end{cases}$	
	TROVARNE LA SOLUZIONE Y, (X) NEL CASO: Xo = O E Yo = - 2.	
_	MOSTRARE CHE PER OBNI (No, No) CON -14 YOCO LA SOLUZIONE	
	DI (*) E UNA TRASLAZIONE DELLA Y. (*) TROVATA NEL PUNTO .	
	DI (*) E UNA TRASLAZIONE DELLA Y. (*) TROVATA NEL PUNTO .	
7A)	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA NEL PUNTO . SI CONSIDERI L'EQUAZIONE Z(Y)= ext dove Z = D3-D2+D-I.	
7A)	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA NEL PUNTO . SI CONSIDERI L'EQUAZIONE Z(Y)= ex dove Z= D3-D2+D-I. a) TROVARNE LA SOL. GENERALE	
7A)	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA NEL PUNTO . SI CONSIDERI L'EQUAZIONE $\chi(\gamma) = e^{2x}$ DOVE $\chi = D^3 - D^2 + D - I$. a) TROVARNE LA SOL. GENERALE b) TROVARNE LA SOL. Y(x) TALE CHE $\gamma(0) = \frac{4}{5}$, $\gamma'(0) = \frac{4}{5}$.	
7A)	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA MEL PUNTO . SI CONSIDERI L'EQUAZIONE Z(Y)= e ^{2x} Dove Z = D³-D²+D-I. a) TROVARME LA SOL. GENERALE b) TROVARME LA SOL. Y(x) TALE CHE Y(o)= ½, Y(o)=½ E Y'(o)=½. c) TROVARME TUTTE LE SOL. CHE SOMO STRETTAMENTE POSITIVE YX & R.	
7A)	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA NEL PUNTO . SI CONSIDERI L'EQUAZIONE $\chi(\gamma) = e^{2x}$ DOVE $\chi = D^3 - D^2 + D - I$. a) TROVARNE LA SOL. GENERALE b) TROVARNE LA SOL. Y(x) TALE CHE $\gamma(0) = \frac{4}{5}$, $\gamma'(0) = \frac{4}{5}$.	
7A)	SI CONSIDERI L'EQUAZIONE Z(Y)= e ^{2x} dove Z = D ³ -D ² + D-I. a) Trovarne la sol. Generale b) Trovarne la sol. Y(a) Tale the Y(o)= \(\frac{1}{5}\), Y(o)=\(\frac{1}{5}\) E Y''(o)=\(\frac{1}{5}\). c) Trovarne tutte le sol the sono strettomente positive \(\frac{1}{5}\). d) Trovare la sol Generale DI Z • Z • Z (1) = e ^{2x}	
7A) 7B	DI (*) E UNA TRASLAZIONE DELLA Y, (*) TROVATA MEL PUNTO . SI CONSIDERI L'EQUAZIONE Z(Y)= e ^{2x} Dove Z = D³-D²+D-I. a) TROVARME LA SOL. GENERALE b) TROVARME LA SOL. Y(x) TALE CHE Y(o)= ½, Y(o)=½ E Y'(o)=½. c) TROVARME TUTTE LE SOL. CHE SOMO STRETTAMENTE POSITIVE YX & R.	
7A) 7B	SI CONSIDERI L'EQUAZIONE Z(Y)= e ^{2x} dove Z = D³-D² + D-I. a) Trovarne la sol. Generale b) Trovarne la sol. Y(x) tale the Y(o)= f, Y(o)= f = Y'(o)= f. c) Trovarne tutte le sol the somo strettamente positive yx e.R. d) Trovare la sol generale DI Z•Z•Z•Z(Y) = e ^{2x} SI Consideri L'Equazione Z(Y)= e ^{-x} hove Z = D³+2D²+4D+8I. a) Trovarne la sol generale	
7A)	SI CONSIDERI L'EQUAZIONE Z(Y)= ex dove Z = D3-D2+D-I. a) TROVARNE LA SOL. GENERALE b) TROVARNE LA SOL. Y(2) TALE CHE Y(0)= 1/5, Y'(0)= 1/5 E Y''(0)= 1/5. c) TROVARNE TUTTE LE SOL. CHE SONO STRETTOMENTE POSITIVE YX & R. d) TROVARNE LA SOL. GENERALE DI Z.Y.Z.Y.Y. = ex dove Z = D3-2D+4D+8I.	
7A)	SI CONSIDERI L'EQUAZIONE Z(Y)= e ^{2x} dove Z = D³-D² + D-I. a) Trovarne la sol. Generale b) Trovarne la sol. Y(x) tale the Y(o)= f, Y(o)= f = Y'(o)= f. c) Trovarne tutte le sol the somo strettamente positive yx e.R. d) Trovare la sol generale DI Z•Z•Z•Z(Y) = e ^{2x} SI Consideri L'Equazione Z(Y)= e ^{-x} hove Z = D³+2D²+4D+8I. a) Trovarne la sol generale	

(8)	DATO IL P. DI CAUCHY $\left\{ y^1 = -\left(x^3 + Y\right)^5 \right\}$ Y(0) = 1, SI IMDICHI COM Y(1) LA SUA SOLUZIONE
	4) HOSTRARE (HE Y(x) E PROLUNGABILE FIND 4 +
FA (b) HOSTRARE CHE Y(R) PER R-+ +- PER R-+ +- C) PER R-+ +- ESISTE IL LIMITE DI Y'(R) ? SE SI, TROVARLO.
	vij vij ren av ros enne retime vij vij je vij novarev.
(9)	TROVARE LA SOL. GENERALE DI Y -3 Y +3 Y -3 Y +2 Y = 2 0 e TO PODICHE STABILIRE
	OKANI SALAMAS AND SAMAS AND THE PROPERTY PROPERTY PER DEMINE PER D
	QUALI SOLUZIONI SOMO: () o ((24) PER X 00) STRETTAMENTE POSITIVE PER DOM X & IR.
(20)	Cut-3/With a Pafe-fi
40	DATO IL PROR DI CAUCHY
	a) PER A= 0 TROVARE LE SOL MELCOSI Y = 1 Y = L2(e+1) E Y= L2(e-1)
	b) PER A=- 1 E Y = 1 MOSTRARE CHE LA SOL. Y(x) E PROLUNGABILE IN AVANTI PINO A + 40
	E PER 1-+ os SI HA Y(x)->+ os.
	a_{1}
(11)	Sia $y(x)$ la soluzione passante per l'origine di $y' = 1 - y^2 ^{1+ x }$. (a) Mostrare che $y(x)$ è prolungabile a tutto \mathbf{R} .
	(b) Mostrare che $y(x)$ è dispari.
	(c) [facoltativa] Dire, motivando la risposta, se $y(x) \to 1$ oppure no, per $x \to +\infty$.
(12)	Data l'equazione differenziale $y^{(5)} - y^{(4)} + 5y^{(3)} - 5y'' + 4y' - 4y = 10e^x$.
	 (a) Trovarne la soluzione generale. (b) Trovarne tutte le eventuali soluzioni y(x) tali che y(x) = o (x²ex²) per x → -∞.
(13)	Sia $y(x)$ la soluzione del problema di Cauchy:
	$\begin{cases} y' = x^3y - xy^3 - xy \\ y(0) = 1. \end{cases}$
	 Mostrare che y(x) è prolungabile a tutto R e studiarne crescenza e de- crescenza. Dira motivando la risposta sa y(x) è una funzione pari
	 (2) Dire, motivando la risposta se y(x) è una funzione pari. (3) Calcolare lim _{x→±∞} y(x).
	(4) Trovare l'ordine di infinito di $y(x)$ per $x \to +\infty$ (facoltativo).

Trovare la soluzione generale dell'equazione

$$y^{(3)} + y'' + y' + y = x^2 + e^{-x}.$$

Trovare poi un'equazione lineare omogenea a coefficienti costanti tale che l'insieme di tutte le sue soluzioni contenga l'insieme di tutte le soluzioni di (5).

Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = x (y^2 - y)^{999} \\ y(0) = \alpha \end{cases}$$

mostrare che y(x) è estendibile a tutto **R**, qualsiasi sia $\alpha \leq 1$.

Trovare tutte le soluzioni dell'equazione

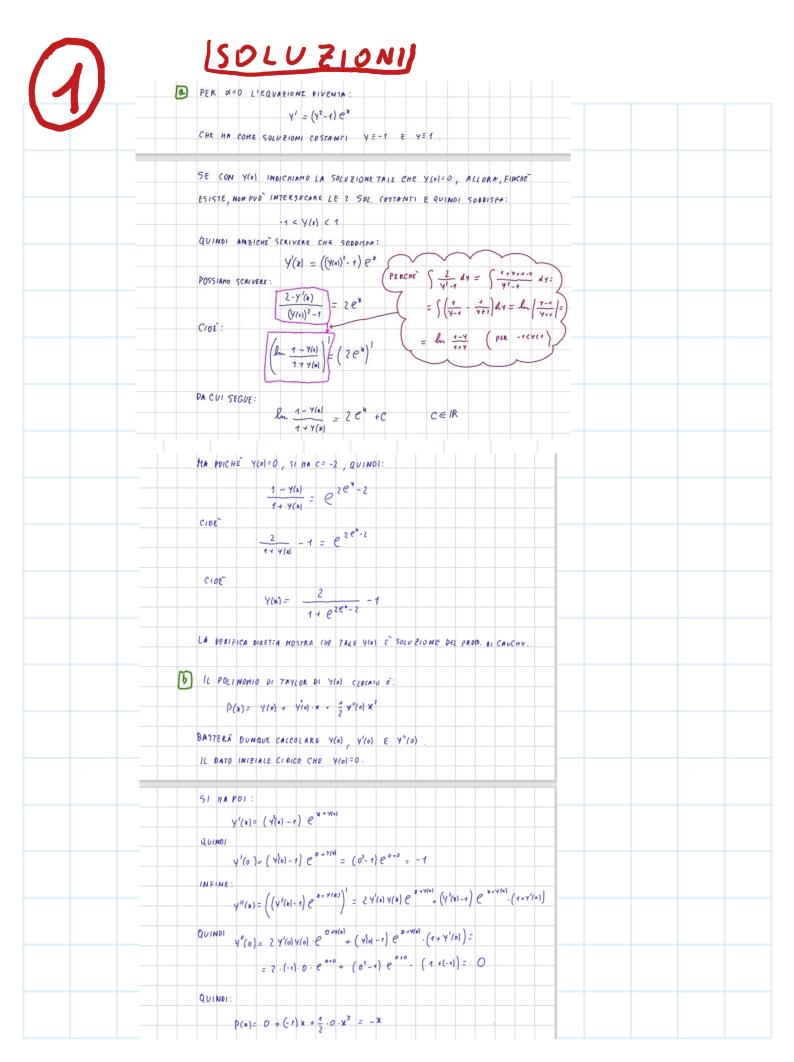
(1)
$$y^{(3)} + 3y'' + 2y' = 2xe^{-x}.$$

e tra esse determinare la soluzione y(x) che, per $x \to 0$ soddisfa $y(x) = o\left(x^2\right)$.

Trovare poi un'equazione lineare omogenea a coefficienti costanti tale che l'insieme di tutte le sue soluzioni contenga l'insieme di tutte le soluzioni di (1).

Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = y^5 - x^3 \\ y(1) = 1 \end{cases}$$


Mostrare che y(x) ha un punto di massimo relativo per x=1.

Sia data l'equazione differenziale y'' + 4y' - 5y = b(x).

- (1) Nel caso $b(x) = 14e^{2x}$ trovarne la soluzione che soddisfa le condizioni iniziali y(0) = 2 e y'(0) = -2.
- (2) Nel caso $b(x) = -26 \cos x$ trovarne la soluzione generale.
- (3) Nel caso $b(x) = 12e^x$ trovarne la soluzione generale.

(19)	PATO IL P. DI CAUCHY \(\frac{y' + \frac{e^{x}}{1 + e^{x}}}{9(y)} = \frac{e^{x}}{\sqrt{1 + e^{x}}} \\ \(\frac{y(4n 3) = \frac{1}{3}}{3}} \)
	Q NEL CASO 9(VI=Y, TROVARME LA SOLVEIONE.
	B NEL CASO g(Y)= √1+71 DIRE SE LA SOLUZIONE É PROLUMGABILE FINO A +00.
	E I I I I I I I I I I I I I I I I I I I
60	DATO L'OPERATORE DIFFERENZIALE X = D°+D , TROVARE TUTTE LE SOLUZ.
	DI ZoZ(Y)= e-2x TALI CHE Y(v)=1 E CHE SONO or (Tx. e-x) PER x++
21	DATO IL P. DI CAUCHY \(\frac{y'=2x(x^2-y''')}{y(0)=0}\) DOVE M E UN PARAMETRO INTERO.
	PER met: { a TROVARE LA SOLUZIONE.
	(DETTA Y(x) LA SOLVEIONE NOSTRARE CHE Y(x) È PROLVINGABILE PINO A+10.
	PER M=4: DETTA Y(x) LA SOLVZIONE, NOSTRARE CHE Y(x) È PROLVMGABILE PINO A+10. DETTA Y(x) LA SOLVZIONE, NOSTRARE CHE Y(x) È PROLVMGABILE PINO A+10.
	DI INFINITES/PO.
(22)	
(24)	TROVARE UN'EQUAZIONE LINE ARE OMOGENEA A COEFFICIENTI COSTANTI CON IL
	MINIMO DEBINE POSSIBILE AVENTE TRA LE SUE SOLUZIONI ANCRE Y(x) = x Go Zx + 8 Tain x.
(2)	$(y' = -y^2 + ln(1+e^2))$
43	DATO IL P. DI CAUCHY $\begin{cases} y' = -y^2 + \ln(1 \cdot e^{x}) \\ y(0) = \alpha \end{cases}$
FACU	(a) MOSTRARE CHE SE &= 0 LA SOLUZIONE Y(n) E PROLUNGABILE FINO A +
T#TIV ^A	(b) DIRE SE ESISTE UN DATO INIZIALE OF TALE CHE LA SOL. YOU CHE SI OFFIEME,
+	RISULTA DEPINITA SU TUTTO IR E SEMPRE STRETTAMENTE CRESCENTE
6	
24	SIA DATA L'EQUAZIONE Z(Y)= ex, DOVE Z= D+13 D2+36 I.
	(a) TROVARNE LA SOL GENERALE (b) TROVARNE, SE CI SONO, TUTTE LE SOL CHE NON INTERSECAND
	L'ASSE X
	(C) TROVARE UNA SOL PARTICOLARE DI ZOZO o Z (Y) = C

4	PREHETTIANO CHE ESSENDO COS'(27) LIPSCHITZIANA, VALE IL TEO.
	DI ESIST. E UNICITÀ LOCALE, QUINDI DONI VOLTA CHE SAREND IN GRADO
	DI ESIBIRE UNA SOLVZIONE PER UN CERTO Y., QUESTA SARA L'UNICA.
_	AD ESEMPIO PER YOUT E OUVID CHE LA FUNZIONE COSTANTE Y_(k)=II
	E SOLUZIONE, VISTO CHE PERY=# IL II "MEMBRO SI ANNULLA, QVIMOI
	OLTRE A LEI NON CE ME 3840 PLTRE
	CERCHIANO OR A LE SOLUZIONI Y, (x) E Y,(x) CON DATI IMIZIALI
	RISPETTIVAMENTE YOU E YOU THE SOMO ENTRANAI DEI VALORI
	CHE NON AMPULLANO IL TO MEMBRO . SAPPIAMO CHE OGNI SOL. Y(W) CON
	DATO INI ZIALE DI QUESTO TIPO, FINCHE ESISTE NON INTERSERA LE SOLUZIONI
	COSTANTI, QUINDI SI HA SEMPRE;
	COS (S A(N)) + 0
	65 (C 11-1) F 5
	QUINDI L'EQUAZIONE PUÈ ESSERE RISCRITTA:
	2 y'(x) _ 2
	$\frac{2 V'(x)}{Cot^2(2 V(x))} = \frac{2}{1+ x^2}$
	CIOE:
	(ton (24(2)) = (2 arctan 2)
	CIDE: $ton(2\pi/2) = 2 \cdot \arctan x + C (con CE R)$
(3)	$ton(2Y(s)) = 2 \cdot arcton x + C (con CE R)$
	LA (3) VALE SIA PER Y2(x) CHE PER Y3(x).
\top	
_	SE ORA RICORDIANO CHE Y2(0)=0 , DALLA (3) RICAVIANO:
	ton (2. Y2(0)) = 2. enclon 0 + C
	CIOÈ C=O.
_	QUINDI Y, (x) SODDISFA:

	$ton (2.7_2(n)) = 2 \cdot arcton n$
-	DA CUI, TENENDO CONTO DEL FATTO CHE Y(0)=D E QUINDI - 1 < Y(x) < 1 , SEGU
_	Y2 (x) = 1 oretan (2 arctan x)
	LA VERIFICA DIRETTA CONFERNA CHE Y2(x) E LA SOL. CERCATA PER Y0 = 0.
_	PER Y (x) PROCEDIANO IN MODO ANALOGO: DA Y (0) = T SEGUE ANCORU
	CHE NELLA (3) SI HA C=0 . DUNQUE Y3 (4) SOBBISFA:
(4)	tan (2 4, (1)) = 2 arcton x
<u> </u>	
	STAVOLTA PERO, SICCOME Y3(0)= 1 , Y3(x) E COMPRESA TRA LE 2 SOL
	COSTANTI Y = T E Y = TA . QUINOI VALE LA STIMA:
	$\frac{1}{2} < 2 \cdot \frac{1}{2} \pi $
	E PERCIO, QUANDO ESPLICITO (4) RISPETTO A Y3(2), STAVOLTA
	OTTENGO:
	$Y_{3}(x) = \frac{\pi}{2} + \frac{1}{2} \arctan(2 \arctan x)$
	ANCHE STAVOLTA LA VERIFICA BIRETTA CONFERMA CHE Y3(1) E LA
	SOLUZIONE CERCATA PER YOF T.

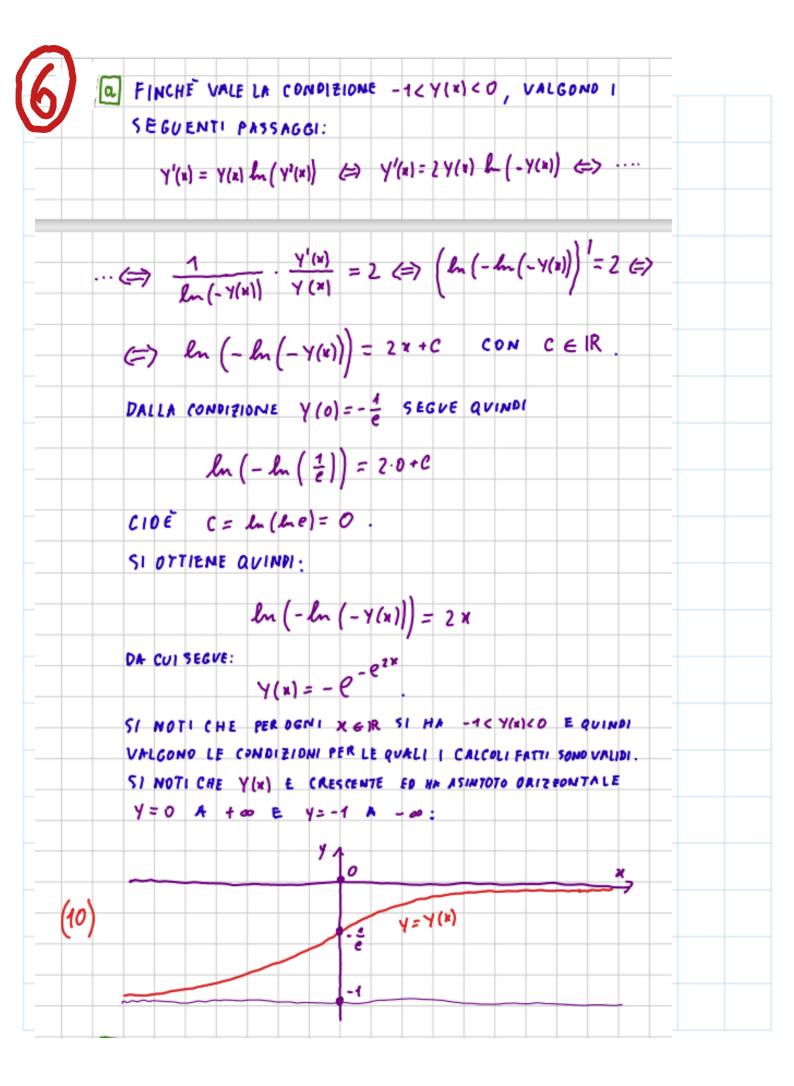
	a	PE	R	X > 0	Ľ	EQU	N Z I O	NE	, 01	TRE	ALL	,£ 2	sol	. Co	S FAR	VTI	Y0 =	0	E
		Υ.	€ 1	,	HA (E SO	k. CI	HE S	01	TENG	OMO	SE	PA R	A ND	O LE	VA	RIAB	ıcı :	
						-		(x)			_		1_						
						3(₹V	1(H)	-	Y(x)) _		K						
		C	I O E																
				_		1	Ļ			1		γ'(x)	٠	1_				
					1	-	ίΥ	(x)	1	, A.	(a)				χ				
		CI	OĔ:							1									
						ln	1	γ̈́ -	Y(a)	\vdash	:	1	-ln	Х) '				
					1	<u> </u>			<u> </u>	1		_\			1				
		CIO	Ĕ:			,	٠,		,										
					ln	11	- 1	Y(n)	1	=	C-	· h	χ			CON	C	=IR	
		Cıo	Ē:	,		± 6	e	1											
		CIO	1-	\\YC	ı) =	± c		X					CON	Ce	: IR				
(1)				у	(x)	= (1		<u>k</u>)	3				Con	ke	IR				
				-		,		,				(A)		0001		,,			
						RETT			e IR		.A	(1)) (וטענ	7 -	r.	E Q V	n ciú	IN.

		AFFINCHE LA (1) SODDISFI ANCHE IL DATO INIZIALE Y(1) = -1 BISOGNA CHE:
		$-1 = Y(1) = \left(1 - \frac{k}{1}\right)^3 = \left(1 - \frac{k}{1}\right)^3$
		CHE EQUIVALE & DIRE K=2
		PER K=2 LA (4) DIVENTA:
		, 213
(2)		$Y(x) = \left(1 - \frac{2}{x}\right)^3$
		QUINDI UNA SOL HASSIMALE DEL PROB. DI CAVCHY E
		(Y(k), (0,+0)) CON Y(k) BATO DA (Z)
	E	SICCOME 3(TY - Y) NON E LOCALMENTE LIPSCHIT BIANA
	اعا	
		LA SOL. TROVATA PER IL PROB. DI CAUCHY POTREBBE NON ESTERE L'
		PER TROVARE LE ALTRE OSSERVIAMO IL GRAFICO DI (2):
		1 4(1)
		'\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		O K
		GRAFICO DI :
		$y(x) = \left(1 - \frac{K}{2}\right)^{3}$
		IN PARTICULARE SI OSSERVI CHE PER DONI FISSATO K>O,
		LA (2) HA LE SEGUENTI PROPRIETÀ:
(3)		lim Y(x) = -00
(4)		Lim 1401 = 1
(5)		Y(A) E STRETTAMENTE (RESCENTE E INTERSECA L'ASSE X P
CII		

	IL PROBLEMA DI CAUCHY PERCHE E S CHE VIENE MENO IL TEOREMA DI UNICI	
	DLTRE A QUELLE DATE DA (4) NON CI	
		VERIFICA CHE E OVVIA)
		CHE SI RACCORDANO IN NODO LISCI
		UNA SOLUZIONE BASTA VERIFICARE
		VERIFICARE CHE TUTTI INSIEME SONO
	5	ONO SOLUZIONI DELL'EQ, PER
	-1 -1 V	1310 CHE I 3 PEZZI PRESI DA SOLI
	V(N)= (1 - 3k)	
	3 2	P
	1 Y(x):	
		$ \psi(x) = \left(1 - \frac{\rho}{x}\right)^3$
	1	- 13
	PROB. DI CAUCHY . IL GRAFICO DI	Y () E IL SEGUENTE:
	E FACILE VERIFICARE CHE PER BONI	(132, Yp(x) E SOL. DEL
	$\left(\left(1-\frac{\Gamma}{2}\right)^{2}\right)$	PER X3P
(,,	$Y_{\rho}(x) = \begin{cases} \left(1 - \frac{2}{x}\right)^{3} \\ \left(1 - \frac{\rho}{x}\right)^{3} \end{cases}$	PER 2CXCP
(7)	$\sqrt{ x } = \left(\left(1 - \frac{2}{x}\right)^{2}\right)$	PER O < x \le z
	PEROGNI P32 SIA:	
	INFINITE SOL. DEL PROB. DI CAUCA	IN MET HODO REGREWLE.
	COSTANTE YO(K) = 0 SOBBISFA L'EQU	AZIONE POSSIATIO COSTRULRE

4	IL POLINOMIO CARATTERISTICO DELL'EQUAZIONE E:
	$P(\lambda) = \lambda^3 - 3\lambda + 2 = \cdots = (\lambda + 2)(\lambda - 1)^2$
	PER CUI LA SOL. GENERALE DELL' ONDGENER ASSOCIATA E:
(3)	Y(1)= 00-2x + (8x+8)ex CON 0,1,8 = 1R.
	SICCOME IL TERNINE NON OMOGENEO E:
	(3x+4)ex
	E λ=1 E RADICE DI P(λ) CON MOLTEPLICITÀ 2,
	CERCHIAMO DRA UNA TOL. PARTICOLARE DELLA NON
	OMOGENER DEL TIPO:
(4)	$V_{\rho}(x) = \chi^{2} \left(Ax + B \right) e^{x} = \left(Ax^{3} + Bx^{2} \right) e^{x}$
	DERIVANDO RIPETUTAMENTE LA (4) SI DITIENE:
	$Y_0^1(x) = (Ax^3 + (3A+B)x^2 + 2Bx)e^x$
	$V_0^{II}(x) = (Ax^3 + (6A+B)x^2 + (6A+9B)x + 2B)e^{x}$

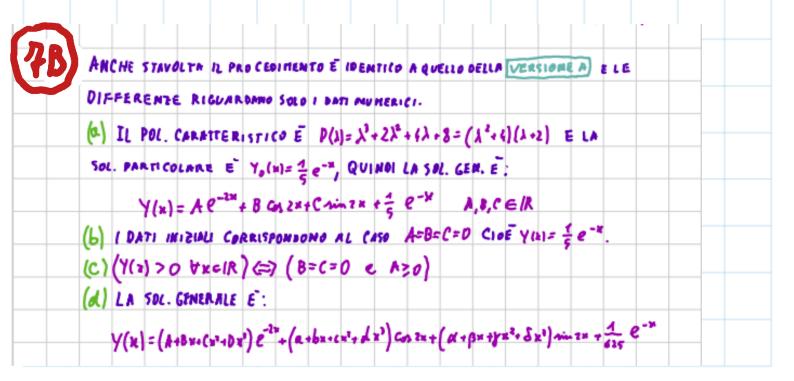
 $Y_0^{(1)}(x) = (Ax^3 + (9A+B)x^2 + (18A+6B)x + 6A+6B)e^{x}$

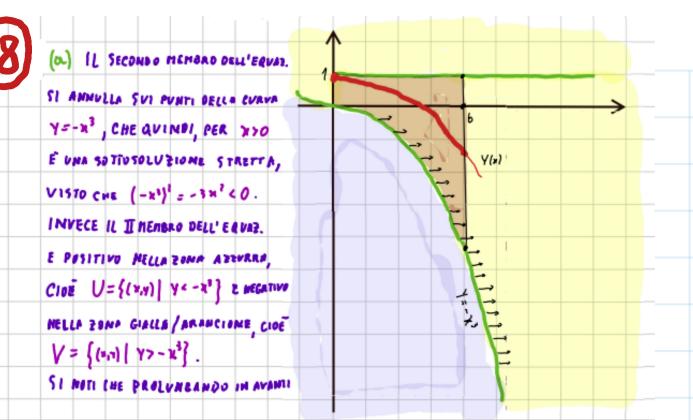

	SOSTITUENDO NELL'EQUAZIONE, I TERMINI COM X3 E X2
	SCOMPAIONO E SI OTTIENE :
	(18 A x + 6 A + 6 B) ex = (3x+4)ex
	QUINDI DEVE ESSERE:
	18 A = 3 6A + 6B = 4
	6A+6B=4
	CHE HA 70 LUZIONI A = 1 E B = 1 .
	QUINDI:
	$Y_0(x) = \left(\frac{1}{6}x^3 + \frac{1}{2}x^2\right)e^{x}$
	E PERCIO LA SOL GENERALE E:
	Y(x) = xe -2x + (3x+x)ex + (8x3+2x2)ex con a18xel
	Y(1)= X C + (5278) C T (8" 26")
Ь	DOBBIAMO TROVARE UN OPERATURE DIFFERENZIALE X
ت	
	A COEFFICIENTI COSTANTI TALE CHE:
(9)	$Z\left(\frac{1}{8}x^{2}e^{x}-\frac{3}{2}xe^{-x}\right)=(3x+4)e^{x}$
	CIDE TALE CHE
(6)	I (= x2 ex) - 2 (= xe-x) = (3 x+4) ex
C-1	

	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	SICCOME & HA LA PROPRIETÀ CHE & (PIE) = QIE) = QIE) e LE
	LA (6) EQUIVALE ALLE 2 CONDIZIONI
	$Z(\frac{1}{8}x^2e^x) = (3x+4)e^x = Z(\frac{3}{2}xe^{-x}) = 0$
	DA CUI SI DEDUCE CHE IL POLINIOMID CARATTERISTICO DI Z
	HA LA RADICE X=1 CON MOLTEPLICITÀ 1 E X=-1 CON
	MOLTEPLICITÀ 2. QUINDI Z E DELLA FORMA:
(7)	$\mathcal{Z} = \mathcal{Z}' \circ (D-I) \circ (D+I)^2$
	DOVE DE L'OPERATORE DEDIVATA I E L'OPERATORE
	IDENTITÀ E Z' È UN OPERATORE DA DETERMINARE.
	OSSERVIANO CHE:
	$(D-I)(D+I)^2(\frac{3}{2}+e^{-x})=(D-I)(0)=0$
	E CHE:
	$(D-I)(D+I)^2\left(\frac{1}{8}y^2e^{2x}\right)=(D+I)^2\left(\frac{x}{4}e^{2x}\right)=(D+I)\left(\left(\frac{x}{2}+\frac{4}{4}\right)e^{2x}\right)=(x+4)e^{2x}$
	QUINDI, GRAZIE ALLA (7), LA (5) DIVENTA:
(8)	21((x+1)ex)=(3x+4)ex
	VISTO CHE (N+1) E (3x+4) HANNO GRADO 1, CERCHIAMO Z'
	DI ORDINE 1 CHE SODDISFI (8), CIOÈ DELLA FORMA:
	2'= (a D+bI) a,b∈1R
	VN TALE Z' SODDISFA (8) SE E SOLO SE:
	(aD+bI)((x+1)ex) = (3x+4)ex
	CIDE:

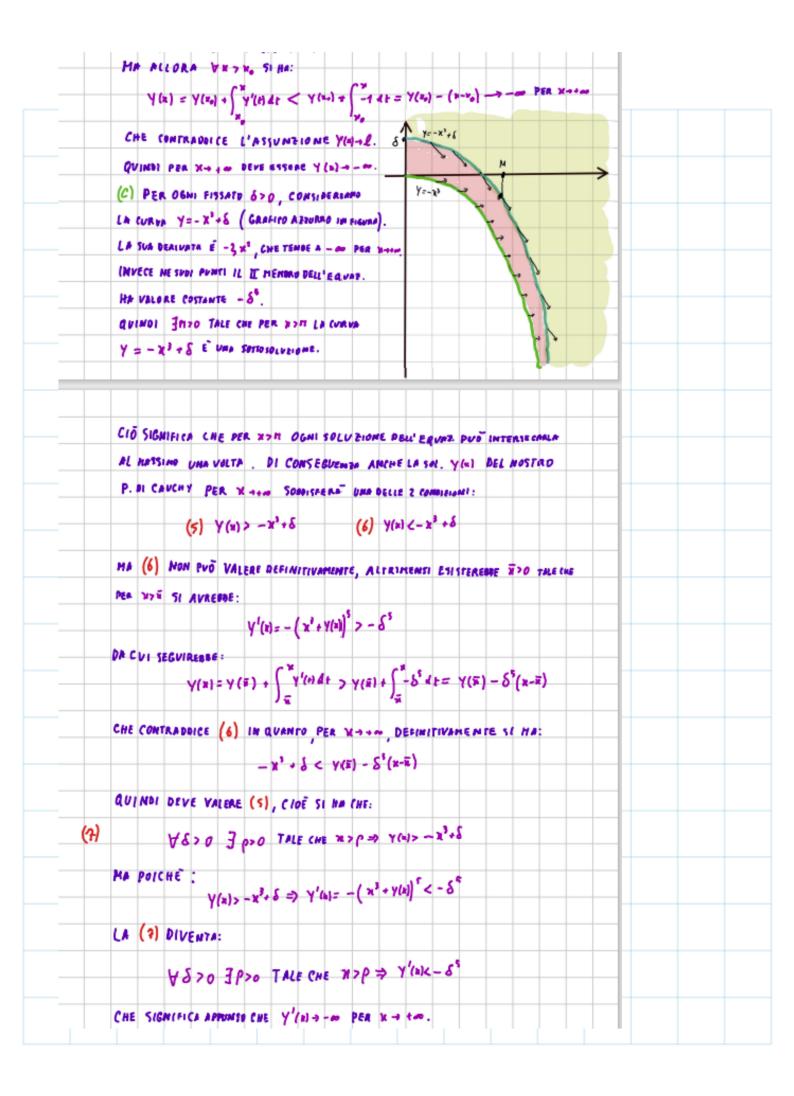
$((a+b)x + (2a+b))e^{x} = (3x+4)e^{x}$ DA CUI SEGUE:
\(\alpha + b = 3 \) \(2a + b = 4 \)
CHE HA SOLUZIONI a=1 E 6=2.
DA CUI SEGUE Z'= (D+2I) E QUINOI:
Z = (D+2I) 0 (D-I) 0 (D+I) 2
QUINDI L'EQ. CERCATA E:
y (4) +3 y "+ y "- 3 y -2 y = (3x+4) ex

5/	
	IL POLINOMIO CARATTERISTICO E λ2-3λ+2 CHE HA RADICI
	λ=1 E λ=2, ENTRAMBE CON MOLTEPLICITÀ 1. QUINDI LA SOL.
	GENERALE DELLA DAGENER ASSOCIATA E:
(10)	Y(x)= x ex + Be2x x, B = 1R
	DRA, SICCOME IL TERMINE NON OMOBENEO È COMBINAZIONE LINEARE
	• • • • • • • • • • • • • • • • • • • •
	DI CON X ED EX E X=1 E RADICE DEL POL. CARATTERISTICO CON HOLTEPLICITÀ 1, CI SARÀ UNA SOL. PARTICOLARE DELLA
	NON OMDGENER BEL TIPO:
(11)	Yo(x) = A Con x + B mm x + C x ex
	PER OPPORTUNI A , B , C & IR .
	DERIVIANO (11) E SOSTITUIANO NELL'EQUAZIONE :
	yo'(x) = - A min + B con x + C (x+1)ex
	Y"(x) = - A con x - B mmx + C (x+2) ex
	SI OTTIENE:
	-A CON X - Brin x + C (x+2)ex -3 (- A rin x + B con x + C (x+1)ex) + 2 (A con x + B rin x + C = ex)= 10 con x + 1
	CIQE:
	(A-3B) conx + (3A+B) rinx - Cex = 10 conx + ex
	DA CUI SEGUE:
	A-3B=10, 3A+8=0 & -C=1
	OWERO .
	A=1, B=-3 E C=-1


				Υ,	(x):	: Co	1 H -	3 ni	n X	- X	e×					
DI	con	SEGL)EN7	h . L	A S	01 6	ENE	RALE	Ē:							
				,												
	Υ(4)=	Y _L (1) + Y _o	(z) =	d	2*+1	3e2*	+ G	n N -	3 sin	x - x	e×	C	0 M	K,BE
Ь	Ľ	OPE	RATI	RE	DII	F.	LINE	ARE	A C	0£FF	Co	STAR	ITI I	REALI	DI	ORDINE
	М	NIH	o CI	ιΕ . <i>/</i>	PPL	CAT	0 A	y (*). L	A AN	INVL	LA	DEV	E A	VER	E IL
							100									
				λ	= 1		CON	μο	LTE	PLIC	ITA	2				
				7	= 4		,, ,,		,	. ,	•	1				
	IL	POL	. A	COL	PF.	REA	1 01	GRAP	0 MI	MIMO	COL	TRI	1 R/	PICI	£ .	
				,.	L,	,	L.									
		P	د(د	(λ	-1)	(y	-2)	(λ²	† 1)	- y	5-47	×+6.	λ³-6	λ²+	5λ·	-2
	Qv	NDI	Ľ	EQI	AZ.	ONE	CER	CATA	Ē:							
			L.,	6)	L,	e1	L,									
			Α,	-	4 Y'	+	6 Y'	-6	Y"+	57	-2	Y = (0			
_		١,		١,				١,	١,			١,	١,	Ι,		



	SI NOTI CHE L'EQ. DIFF. ASSEGNATA É AUTONOMA, CIOÈ DELLA FOR. Y'=F(Y) CON F CHE NON DIPENDE DA N.
	DI CONSEGUENZA SE Y(x) E SOLUZIONE, LO È ANCHE
	OGNI SUA TRASLATA ORIZZONIALE, CIOÈ OGNI FUNZIONE
	V(x) DEL 7100;
	v(x)=Y(x+a) CON a & IR
	QUE STO PERCHE:
	v'(x)= Y'(x+a).1= f(Y(x+a))= f(v(t))
	MA PER COME E FATTA Y(x) (VEDI FIC. (10)), LE SUE
	TRASLATE ORIZZONTALI RIEMPIONO LA STRISCIA (R×(-1,0),
	OVVERO:
	V(YOY) E IRY(-1,0) BUEIR T.C. Y=Y(A+B) PASSA PER (XO, Yo)
	PER QUANTO APPENA DETTO TALE FUNZIONE È SOL. DEL PROD. DI CAUC
(11)	(y'= y bn(y3) (y(v.)= yo
(,	(Y(v.)= Yo
	ED È L'UNICA, GRAZIE AL T. DI UNICITÀ.
	QUINDI PER OGNI (V., V.) & IRY (-1,0) LA SOL. DI (11) E
	UNA TRASLATA DI Y(X) .


	(A) IL POLIMONIO CARATTERISTICO DI Z E:	
	$P(\lambda) = \lambda^{3} - \lambda^{2} + \lambda - 1 = (\lambda - 1)(\lambda^{2} + 1)$	
	LE CUI RADICI SONO 1, LE -L, QUINDI LA SOL GENERALE DELL'OMOGENER ASSOCIATA E:	
	Y(z)=Ae"+Bcnx+Csinz A,B,CEIR	
	ORA, POICHE 2 NON E RAPICE DI P(1), CERCHIAMO UNA SOL PARTICOLARE DI L'(1)=e20	
	TRALE FUNZIONI BEL TIPO YO(x)= Cext HA SICCOME SI HA:	
	Z(ce2x) = 8c e2x - 4ce2x + 2c e2x - ce2x = 5ce2x	
	PER DITENERE L(Cezu)= ez DEVE Essere C=1, QUINDI Y. (x)=1ez E	
	DUNQUE LA SOL GENERALE DI L'(Y)=e2n E:	
Δı	Y(x)= Aex + B conx + C mx + 1 e 2x CON A, B, C G/R	
(3)	7(1)= 10 = 1000 = 10 0000 = 10 000 = 10 000 = 10 000 = 10 000 = 10 000 = 10 000 = 10 0000 = 10 000 = 10	
	(b) DERIVANDO RIPETUTAMENTE (1) SI OTTIENE:	
	_	
	Y'(x) = Aex - Bainx + C cotx + = = e2x	
	Y"(x) = A C" - B con x - C nin x + 6 C2"	
	QUINDI LE COMBIZIONI INIZIALI Y(0)= \$ Y'(0) = \$ E Y"(0) = \$ DIVENTANO:	
	$\begin{cases} A + B + \frac{1}{5} = \frac{1}{5} \\ A + C + \frac{3}{5} = \frac{2}{5} \\ A - B + \frac{1}{5} = \frac{5}{5} \end{cases}$	
	A+C+===================================	
	A-8+5=5	
	DA CUI SEGUE A=B=C=O. QVINDI LA SOL CERCATA E Y(x)= 1 e2x	
	(C) AFFINCHE LA Y(W) DATE DA (3) SIA POSITIVA É MECESSARIO CHE B=C=O,	
	ALTRINENTI IL TERNINE BONX + C nin OSCILLERESSE TRA -V81461	
	E VB1+C1 QVINSI PER X 00, Y(X) SARESSE FREQUENTEMENTE NEGATIVA	
	PERCHE I TERMINI RIMANENTI SONO INFINITESIMI.	
	QUINDI Y(W) E DELLA FORMA	

DAL	LA	(1	ξĘ	J.	CHE,	52	10551	A	0, 5	AVRE	48E	Y (=	40	SV	/M' 0P	PURT	/ A A	
521	IIR.	ŧ 71	4	, I M	ışn	LA,	avi	, افد	PER	vere	Yel	0 ¥	e o iR	B110	GNA	CHE N	ELLA	(4)	
SIA	A	0	. 1	L Fø	ITTO	CHE	THE	COND	No.2	E 51#	ANCH	E SV	FFICIE	NIE	ë ov	110.			
(d)	٨	be	1#1	HO	611	ī vi	STO .	NEL F	PVNT	(a)	CHE	2	ce	2=)=	1/5	ez,	qu	MBI	
		+		ŀ	4		٤٠,	20%	l•1	(e e	24) :	$\left(\frac{4}{5}\right)$	4.e	ž×.					
DI	CO	N	i e d	νE	N ?	A U	NA S	ot. F	PRTI	COL A	RE É	γ,	(k)=	1 629	e ¹⁸				
Nel	TR	Ε	L	Pol	IN	mid	Cal	erri	RESI	col	1 1	[•1	I.I	Ē	(P	4)4	DOVE		
											Qv								
		4		ļ			λ	-1	1										
		4					λ	. i	۱ }	Tu	TIE C	N R	UTE	PLIC	rā.	4 .			
							l	= - i	1										
LA	Sø	L.	GE	NĘ	RPL	ĔĒ		e Cië :											
Y	(x	=	(A +1	B× ·	• 6 =	*+ D	ı)e	+(1	t +b×	CX34	14)4	M # +	(d+p	***	x²+(n3)^	in#+	1 625	,214
		1		t			٠.		١,	e li									

LA MOSTRA SOL. Y(N) GRAZIE AL TEO. BELLA SOTTOSOLUZIONE, NON PUT TINI INTERSECARE Y = - 23 . QVINOL IL GRAFICO DI Y(E) RIMARE SEMPRE NELLA ZONA V E QUINDI Y'(2) CO. CIÒ SIGNIFICA CHE YINI DER 200 FINCHE ESISTE E STRETTAMENTE DECRESCENTE E QUINDI Y(x) < Y(0) = 1. SIAMO DER IN GRADO DI DIMOSTRARE CHE YOU E PROLUMCABILE FINO A + ... INFATTI SE PER ASSURDO L'INTERVALLO DI ESISTENZA MASSIMALE AVESTE COME SECONDO ESTRENO betto, ALLORA PER DENCO IL GRAPICO DI Y(X) SEREBBE CONTENUTO MEL COMPATTO K= {(x, y) | 05x5b , - x25 Y 5 4} E QUINOI, GRAZIE AL TEO. DI PROLUMBABILITÀ PUORI DAI COMPATTI, Y(1) POTREBRE ESSERE PROLUMBATA DETRE b, IN CONTRASTO COL FATTO CHE & FIL II ESTREMO DELL'INTERVALLO DI ESISTENZA MASSIMALE QUINOL YA) E PROLUMENTICE FINDA + 00. (b) POICHE PER X>0 Y(x) DECRESCE, STAND CERTI CHE Ling Y(x) ESISTE. SE PER ASSURDO NON FOSSE - OF HA LEIR, ALLORS SI AVREAGE: lim y(x) = lim - (x3+y(x))5 = - (+00+2)5 = -00 OTTERRENDO QUINDI CHE 3x.30 TALE CHE Y'OI <- 1 PER X 3 %.

IL POLINOMIO CARATTERISTICO È: $P(\lambda) = \lambda^{4} - 3\lambda^{3} + 3\lambda^{2} - 3\lambda + 2 = (\lambda^{2} + 1)(\lambda - 1)(\lambda - 2)$ QVINDI LA SOL CENERALE E Y(x)= A Gos x + B == x + Cex + De2x + Y.(x) Con A,B,C,D = /R DOVE YOL E UNA SOL PARTICOLARE DA DETERNINARE. CERCHIANOLA DELLA FORMA Yo(x) - K.e3. SOSTITUENDO NELL'EQUAZIONE SI TROUB: 81 Ke3 - 3.27ke3 + 3.9ke3 - 3.3ke3 + 2.ke3 = 20e3 = CIDE: $20ke^{3x} = 20e^{3x}$ DA CUI SECUE K=1. QUINDI LA SOL GENERALE E: Y(1)= A Cos x + B m x + C ex + De2x + e3x CON A, B, C, DEIR. (SE A E B NON SONO ENTRAMOE NULLE IL TERMINE A GONT BANTE E PERIODICO E CONTINUA AD OSCILLARE TRA DUE VALURI P & -P. QUINDI, SICCOME GLI ALTRI TERMINI DI Y(X) SONO INFINITESIMI PER X-7 -- AFFINCHE Y(A) -0 PER X- - - BISOGNO CHE A=8=0. A QUESTO PUNTO, SE FOSSE C+O, PER X--- SI AVREAGE Y(x)2 C ex (HE MON E O(ex) . QVINGI DEVE ESSERE C =0. INFINE DEVE ESSERE ANCHE D= O ALTRIMENTI Y(x) = De CHE MON E σ(ex) D'ALTRA PARTE, SE A=0=C=D SI HA Y(x)= e3x = σ(ex) QUINDI L'UNICH SOL CHE VA BENE E Y(A) = e32

							ORI ME							
FR	EQVE	N TE	NEN	re vi	LORI	NEG	ATIVI	PER	×	٠.				
AF	PURA	TO C	ηE	DEVE	ESS	RE	A = 8 = 1	, 51	011	ENE	. An	HE	:HE	c ≥ 0,
PE	RCHÉ	Au	TAIF	ENT	PEI	R X→	+ Si	AVAC	BBE	Ylu)≈ ¢	e*	(0.	
HA	PER	A=8	=0 t	C3	, y	(a) 51	PVÕ RI	SCRIV	ERE I	NEL F	1000	SEGUI	ENTE	
		Yw	ŧ	ce*	+ D 6	? ²¹ 4 (237 =	e*.(ezx	† D	6× +	c)=	:	
			;	e*((e*)2-2	ve∙e,	+ C	+ (D	+2 Vc)e*	=		
			=	e"	. (e	× -√0	ē)² -	(D.	•2√c)e'	¥			
DA	CVI							_					50	LO SE:
			(c	=0 e	D ?	0)	σ (l	:>0	e	D> -	.2√c			

	(A) PER A-1 L'EQUAZIONE BIVENTA:
(4)	y' = 3Vx · Vy · e * V* · e · F
	CHE E A VARIABILI SEPARABILI ED E DEPINITA MEL I QUADRANTE CIDE
	IN 5 = {(1,7) \in IR2 x30 e y30} ATTENZIONE CHE LA CONDIZIONE
	DI LIPSCHITZ VIENE MENO NEI PUNTI CON Y=0, QUINOI LA SOLUZIONE
	COSTANTE Y(x) = O POO ESSERE INTERSECATA.
	TROVIAMO LE ALTRE SOL. SEPARANDO LE VARIABILI. FINCHE Y(N) #0 LA(1)
	SI PUO SCRIVERE:
	$e^{\sqrt{\gamma(u)}} \cdot \frac{1}{2\sqrt{\gamma(u)}} \cdot \gamma'(u) = \frac{3}{2} \cdot \sqrt{\pi} \cdot e^{\pi\sqrt{u}}$
	$(e^{\sqrt{\gamma(n)}}) = (e^{\pi\sqrt{x}})^{1}$
	CIDE: PYCH = P + K CON KEIR
(2)	evilla = e + k con kelk
(4	SE Y(1) = 1 LA (2) IMPLICA P = P +k, DA CUI SEGUE K=0
	EQUINDISIOTTIENE LA SOLUZIONE:
(3)	$\gamma(n) = \kappa^3$
	CHE SODDISFA L'EQUAZIONE PER OGNI X30.
	INVECE, SE Y(1) = lit(e+1), PER X=1 LA (2) DIVENTA C+1= C+K,
	DA CUI SEGUE CHE K=7 E QUINDI LA SOL CHE SI OFTIENE
	$0A (2) \in V(x) = h^2 (e^{x + 1})$
	CHE PURE SOIDISER L'EQUAZIONE PER OGNI X 20.
	INFINE, SE Y(+)= 12(e-4), PER X=1 LA (2) DIVENTA E-1= E+K,
	DA CUI SEGUE K=-1 E QUINOI
	Y(x)= ln2(ex va - 1)

+																										Ý.	
+	11	,	17	۸,	۷۱	٨	E		I	nt 	VI,	ין ה		V	E	KI I	-10	A R	5	CI	tE 	PEI	Κ	X =	٧,	li² X	
+		- 1															NE									+	
+	0	1	,	+	40			P	~ 6	~ .,	_	-		٢	0						P	EÁ	2	0 <	x <	L	2
+		+		+		t			+		Yί	r)	=	5	0	1/	OX	X	٠,	1	12	ER			Je.	3/h	
+			_				0		. /		٠.	cn	,		ļ		SE.	C4	DE.	1	100		31/	201	. 0	-	
+	•																2(e		_	"	= 9	-	£11	7 84 0	- 7	EK	
+																	CHY		1		+	+			+	+	
+	(0)	1	-	01	"	יעו	-	, n	•	16		\top			\neg					<u>.</u>		+			+		
+		+		+		+			+		ſ	-	11	-	3 1	*	1-1	e		1 L	Ψy	+			+		
+		+		+		t			\dagger		4		41	1)=	:1			+	+		\vdash	\dagger			+		
t	E	9	I A		v	/,	١	1.7	,	51/1	_	+		216	\rightarrow			$^{+}$			\vdash	t			t		
t		\neg		Т								\neg					210	NE	c	151		7.6	,	100	, b 1	E A	1
t		т		т								\neg														CHE	
t																		1				Î	•	, -	1 PA	LHE	
t			-,	+			,,,	1	ľ		7 70	,	4 (u)	,	4		T				Ť			t	\top	
İ																	υN			: 1 A	CH	ŗ,	v/2	١F	515	īE.	
Ť																										ICHY	
İ			Î	ĺ	Ì	'	•	- 1	Ť						Ĭ			,,,,	"	16		NV.			C.JF	JC WY	
†		†				Ť			†			١	1	Y':	-	3 V	×Υ	e	χVi	-	7	Ť					
Ť		†				Ť			\dagger			7				,											
Ť		1				Ť			\dagger			(٧(٠	()-	- 1						Ť					
Ť	CF	+ E	É	•	D4	TA	D	A (3)		p,	c	ON	SE	61	/EN	131	P	ER	×	7 1	, ,	-14	СН	ξ	/(w)	
Ť	E	- 1										1										'					
()						Ť			Ť		1	4	γ	(K) (()	3					Ť					
	5	u	М	0	0	e a	1	N	G R	, p.o	0 1	0,	D	M) 5 1	TRA	R F	C	иE		y (h) (ĔJ	RO.	נטו	4GA	ILE
Ť																										REI	

+	SUPERIORE DELL'INTERVALLO DI ESISTENZA MASSIMME SAREBBE 6
	QUINDI Y(LI RISRETTA A (1,6) NON SAREBBE PROLUNGABILE
	A DESTRA DI B. MA GRAZIE A (4) IL GRAFICO DI YINE
	CONTRAVED NEL COMPATIO
	K={(n, v) & IR2 1 < x < b , 1 < v < x }
	QUINDI IL TEO. DI PROLUNGABILITÀ FUORI DAI COMPATTI
	GARANTISCE LA PROLUNGABILITÀ DI YEN DETRE D.
	QUINDI E ASSURDO SUPPORRE CHE b <+
	QVINDI Y(1) E PROLUNGABILE FIND A +
	MOSTRIATED ORA CHE Y(x) -+ PER X-+
	POICHE IL IIº MEMBRO DELL'EQUAZIONE E POSITIVO, Y(x) E
	CRESCENTE, QUINDI SAPPIANO CHE PER X->+ SI HA
(5)	Y(x) -> SUP{Y(1) x 2 1} = (> Y(1) = 1
	SE PER ASSURAD FORSE LC+00, ALIDER SI AVERBOE:
	Lim y'(n)= lim 3 \ XY-\frac{1}{2} e 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	QUINDI Y'(x) -> + - PER X -> + - PERCIO 3 X 31 TALE CHE
	Y'(x) 3 1 PER X3x. DI CONSEGUENZA, YX3x. SI HA:
	Y(x)-Y(x)= \(\frac{x}{y'/H} dt \rightarrow \int \frac{x}{x} dt = x-x_0
	Q UINDI
	Y(x) > (x,) + x-x) ->+ - PER x ->+ -
	IN CONTRADDIZIONE COL FATTO CHE R= SUP{V(x) #34} < +00.
	QUINDI NELLA (5) DEVE ESSERE L = 100

(a) F(x,y) = 1-Y2 4+12 SODDISFA LA CONDIZIONE DI LIPSCO	ніте.
PER VERIFICARLO BASTA OSSERVARE CHE PER OGNI F	=155ATO XOEIR,
LA FUNZIONE DELLA SOLA VARIABILE Y DATA DA F (x.	
SU TUTTO IR ED E CT A TRATTI, CON LA DERIVATA	
[-a, a] (con a > v2) HA MASSIMO 2(1+ x1) a (
DA CIÓ SEGUE CHE, SE SE = {(x,v) / (x) < b, lylca},	
$\forall (x,y_1),(x,y_2) \in \Omega \mid F(x,y_1) - F(x,y_2) \mid \langle \lfloor y_1-y_2 \rangle \mid \langle y_1-y_2 $	21
DOVE $L = 2a(1+b)(a^2-1)^b$.	
QVINDI F(54) SODDISFELA CONDIZIONE DI LIPSCHITZ	SA LALLO IE;
GRAZIE A CIÓ VALE IL T. DI ESISTENZA E UNICIT	LOCALE E,
DI CONSEGUENZA, LA SOLUZIONE Y(x) CHE SODOI	
PUT INTERSECARE LE 2 SOL. COSTANTI Y = 1 E Y=-	(VEOI VNA)
DUNQUE, FINCHE Y(x) ESISTE, RIMANE CONFINATA NEL	LA STRISCIA DE GLI SCRIFTI)
S={(x, Y) & IR2 -1cyc+}. QUESTO FATTO, COM	BINATO NEL SOLITO
MODO COL TEOREMA DI PROLUNGABILITÀ FUORI DAI	COMPATTI CI PERMETTE
DI DINOSTRARE LA PROLUNGABILITÀ A TUTTO IR DI	Y(x).
(b) DOBBIAND MOSTRARE CHE LA FUNZIONE V(x) = .	- Y (- x) COINCIDE CON Y(x)
A TALE SCOPO BASTA DIMOSTRARE CHE ANCHE	U(N) SODDISEN LO
STESSO PROB. DI CAUCHY DI Y(2) E POI INVOCA	RE 12 T. DI UNICITAT.
PER COMMICIARE IL DATO INIZIALE E:	
V(0) = -Y(-0) = -Y(0) = -0 = 0	
PER Z'EQUAZIONE SI WA:	(,)214+1-41
N (x) = (-4(-x)) = - 4(-x). (-1) = 4 (-x) = 1 -	(*4(-x) " =
$= 1 - (-y(-u))^2 ^{1+ x } = 1 - 6 $	(v(x)) 2 1 1 1 x

	QVINOL PER IL T. DI UNICITA Y(x) E V(x) SONO LA STESSA
	FUNZIONE, PERCIÓ PER DONI XEIR SI HA Y(x)= T(x)=-Y(-x)
	OVVERO Y(x) E DISPARI
(c)	POICHE Y(x) E (RESCENTE E PER X70 COMPRESA TRA
	D E 1, IL SUO LIMITE L PER N->+00 ESISTE E SODDISFA
	OCL ST. VOGLIAMO MOSTRARE CHE L #1
	SE SUP{Y(x) NEIR} & 1 - 10 AVREND DVVIAMENTE CHE ANCHE L 61-1 (4
	Equinol Lat.
	SE INVECE SUP { Y(x) x & IR} > - 1 ALLONA ESISTE X0 > 0 T.C.
	V/v \ _ 4 _ 1 _ E _ 4 _ 2 _ / V/s \ / 4 DER X \ X \ X
	$Y(x_0) = 1 - \frac{1}{60}$ = $1 - \frac{1}{60}$ < $Y(x) < 1$ PER X>X,
	MA ALLORA, PER OGNI X > X , SI HA:
	$Y(x) = Y(x_0) + \int_{x_0}^{x} Y'(t) dt = Y(x_0) + \int_{x_0}^{x} (1 - (Y(t))^2)^{1+t} dt <$
= 1-1+	1 - 1 < 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
	$\frac{1}{50} - \frac{1}{1600} \left(\frac{1}{300} \right)^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \int_{\frac{1}{100}}^{\frac{1}{100}} \left(\frac{1}{300} \right)^{\frac{1}{100}} dt < 1 - \frac{1}{600} + \frac{1}{100} + 1$
) ₁₂₀
	$(1-\frac{1}{60}+\int_{0}^{+00}(\frac{1}{30})^{1+t}dt=1-\frac{1}{60}+\frac{1}{30}\cdot\frac{-1}{40}=$
	1- 80 0 30 m = 10 30 m = 30
	$= 1 - \frac{1}{60} + \frac{1}{30 \text{lm}} = 1 - \frac{1}{100} = 1 - \frac{1}{100}$
	Number 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	DUNQUE, DAL FATTO CHE PER OGNI XEIR SIA Y(x) C 1- 110 SEGUE
	CHE L < 1- 1/10 < 1. IN OGMI CASO, QVINDI, & # 1.

2 (0)	IL POLINOMIO CARATTERISTICO E
7	
	$P(\lambda) = \lambda^{5} - \lambda^{6} + 5\lambda^{3} - 5\lambda^{2} + 4\lambda + 4 = (\lambda - 1)(\lambda^{2} + 1)(\lambda^{2} + 4)$
	LE CUI RADICI SONO $\lambda = 1$ $\lambda = \pm i$ $\lambda = \pm 2i$ TUTTE CON MULTERLICITÀ 1,
	Q VINDI LA SOL. GENERALE E:
	Y(x) = A ex + B rinx + (corx + D rinzx + E cor 2x + Yola)
	COM AB, C, D, E EIR ED YOU DELLA FORMA YOU - UXE, CON a EIR
	DA DETERMINARE .
	TROVIAMO Q - PER OGNI KEIN SI HA:
	$\frac{Y^{(k)}}{Y^{(k)}} = \alpha \cdot (x+k)e^{x}$
	QUINDI SOSTITUENDO MELL'EQUAZIONE, SI OFFIENE:
	Q (x+5) e - a (x+4)e +5a(x+3)e -5a(x+2)e +4a (x+1)e -4axe = 10ex
	CIOE:
	a (1+5+4)e = 10e*
	DA CUI SEGUE a =1, CIDE YOUTS Xe.
	QUINDI LA SOC. GENERALE ET:
	NO AND COUNTY
1)	Y(x) = Aex + Bring + Carry + Drings + E con 2x + xex
// /	AL WARIARE DI A.B. C.D.E IN IR.
(b)	LA (1) è o(n2 ex) PER X -> - ao SE E SOLO SE B=C=D=E=O
	IL "SE" E OWIO. PER IL "SOLOSE" BASTA OSSERVARE CHE
	SE B, C, D EO E NON SONO TVITI MULLI ALLURA PER X 00,
	Brown + Cconx + Dringx + E con 2x +> 0
	PERCHE E PERIODICA NON IDENTICAMENTE NULLA, QUINDI NON
	TO CONTRACT HOM (NEW ITEMENTE MOLEN, MOTHER MON