Analisi Matematica 2 - CdL Matematica - docente: Callegari - (29 aprile / 2 maggio 2022)

Lezioni 22-23

Numeri complessi

DEF.O (INFORMALE) C E L'INSIEME DEGLI OGGETTI DEL TIPO Q+bi, DOVE O, bell e i E UN SIMBOLO. TALI OGGETTI SI SOMMANO E MOLTIPLICANO COME SE FOSSERO POLINOMI NELLA VARIABILE i CON LA REGOLA AGGIUNTIVA CHE LE POTENZE DI à CON ESPONENTE MAGGIORE DI 7 SI RIDUCONO USANDO LA REGULA 12 =-1. ESEMPIO O ECCO QUALCHE ESEMPIO DI CALCOLO · (3+92)+(7-32) = 10+22 · (4+i)+(5-i)=9+0i=9 • (1+i) • (2-3i) = $2+2i-3i-3i^2 = 2+i-3\cdot(-1) = 5-i$ • $(\sqrt{3} + \lambda)^3 = (\sqrt{5})^3 + 3 + (\sqrt{5})^2 \cdot \lambda + 3 \cdot \sqrt{3} \cdot (\lambda)^2 + \lambda^3 =$ = $3\sqrt{5} + 9i + 3\sqrt{5}(i)^{2} + (i)^{3} = 3\sqrt{5} + 9i - 7\sqrt{5} - i = 0 + 8i = 8i$ 055.0 E FACILE DIMOSTRARE CHE C E UN CAMPO, DOVE L'ELEMENTO NEUTRO DELL'ADDIZIONE E 0+0:, CIUE 0, MENTRE QUELLO DELLA MOLTIPLICAZIONE 1+ 0 i CIVE 1. AD ESEMPIO MOSTRIANO CHE OGNI Q+bi + 0+0: HA INVERSO MOLTIPLICATIVO. BASTA INFATTI PRENDERE &+Bi, C N d= = E B= -5 E SI OTTIENE $\left(a + b_{1} \right) \cdot \left(a + \beta_{1} \right) = \left(a + b_{1} \right) \cdot \left(\frac{a}{a^{2} + b^{2}} - \frac{b}{a^{2} + b^{2}} + \frac{ab}{a^{2} + b^{2}} + \frac{ab}{a^{2} + b^{2}} + \frac{b^{2}}{a^{2} + b^{2}}$ **055. 1**PER

PER CHI HA GIA SEGUITO UN CORSO DI ALGEBRA, LA DEF.O PUÒ ESSERE RESA FORMACE

PRENDENDO | R [2] CIOÈ L'ANGLLO DEI POLINOMI IN UNA VARIABILE, E QUOZIENTANDOLO

RISPETTO ALL'IDEALE GENERATO DA 2014. IN TAL MODO IL NUMERO COMPLESSO A 161

CORRISPONDE ALLA CLASSE CONTENENTE IL POLINOMIO Q 162. TUTTAVIA, CHI NON AVESSE

SEGUITO UN CORSO DI ALGEBRA, PUÒ COMUNQUE DARE UNA DEE FORMALE NEL MODO CHE SEGUE.

DEF. 1

I NUMERI COMPLESSI SONO UNA TERMA (C, +, .), DOVE C=IR2 E + E.

SONO OPERAZIONI SV C DEFINITE DA:

(1) (a,b)+(d,g)=(a+d,b+g)

(2) $(a,b)\cdot(\alpha,\beta)=(a\alpha-b\beta,\alpha\beta+b\alpha)$

055.2

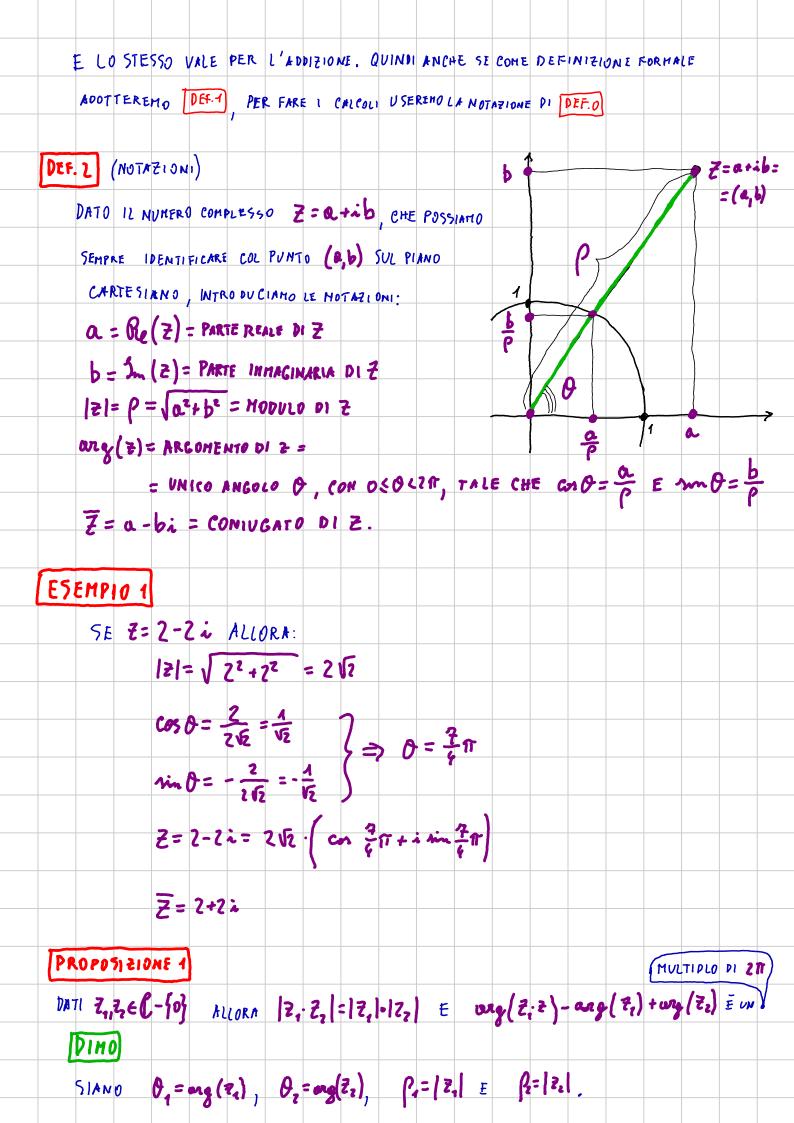
ANCHE CON QUESTA DEFINITIONE E SEMPLICE VERIFICARE CHE (C,+,.)

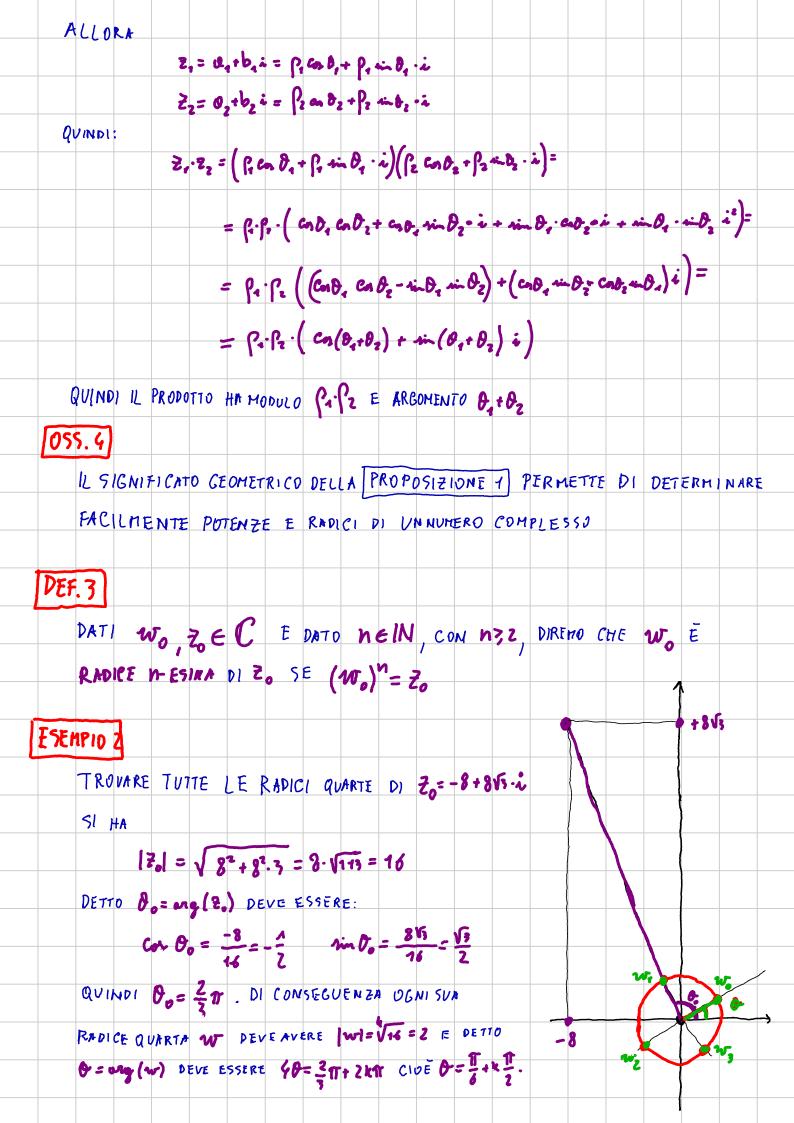
E UN CAMPO. INOLTRE, SICCOME PER 6= B=0 (1) E (2) DIVENTANO:

(0,0)+(d,0) = (u+d,0)

(a,0) . (d,0) = (0.4-0.0, a.0.0.4) = (a.d,0)

SI OTTIENE BANALMENTE CHE L'INSTERNE { (a,0) | a EIR} E UN


SOTTOCAMPO DI C ISOMORFO A IR.


055.3

LA CORRISPONDENZA BIUNIVO CA Q+bi (Q,b) TRA GLI OGGETTI

DEFINITI IN DEFO E DEFT F CHIARAMENTE UN ISOMORFISMO; PER LA MOLTIPLICAZIONE SI 4M:

(e, b) · (a, B) = · · · · · · = (ad-bB, aB+db)

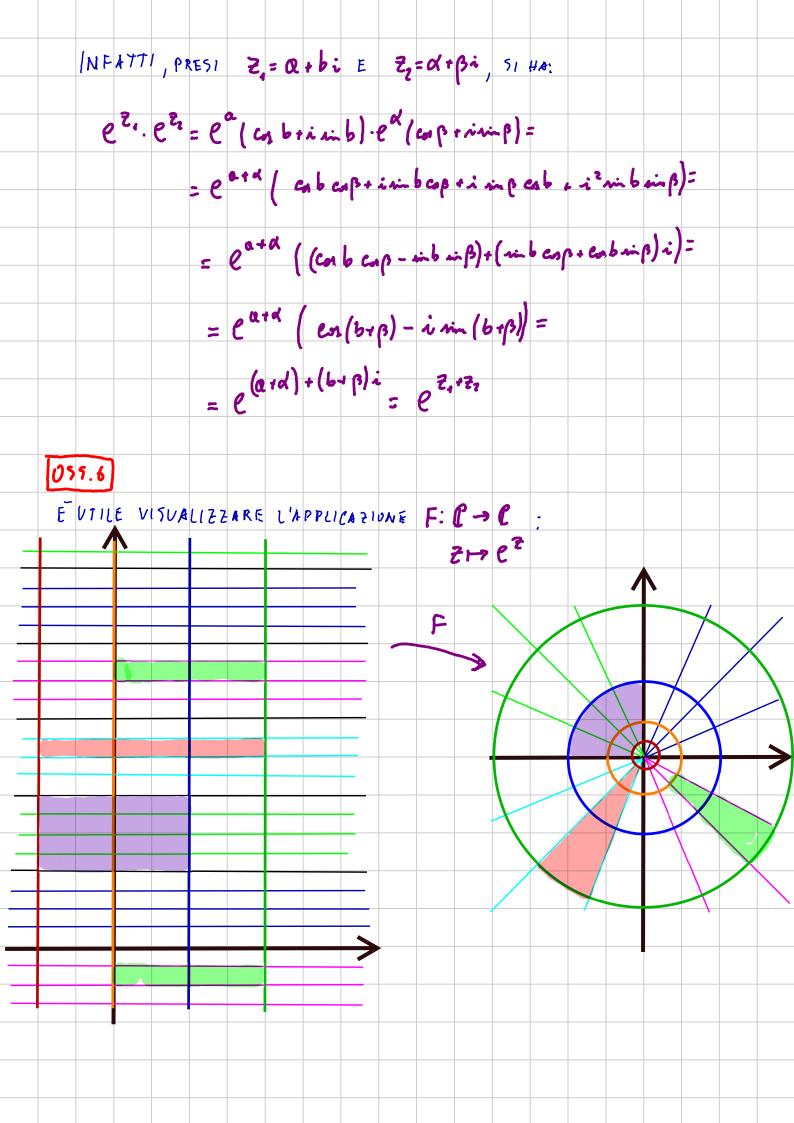
$$\theta = \frac{ft}{6}$$
 $\theta = \frac{2}{3}\pi$ $\theta = \frac{7}{6}\pi$ $\theta = \frac{5}{3}\pi$

QUINDI LE CORRISPONDENTI 4 RADICI QUARTE SOMO:

$$W_{q} = 2\left(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi\right) = 2\left(-\frac{4}{2} + \frac{\sqrt{3}}{2}i\right) = -1 + \sqrt{3}i$$

$$W_3 = 2\left(c_3 \frac{5}{3}\pi + i \frac{1}{3}\pi\right) = 2\left(\frac{1}{2} - \frac{15}{2}i\right) = 1 - \sqrt{3}i$$

OPERANDO NEL CASO GENERALE ESATTAMENTE COME IN QUESTO ESEMPLO


SI OTTIENE:

PROPOSIZIONE 2

E SOND DATE DAILA FORMULA:

DEF 4

055.5

Analisi Matematica 2 - CdL Matematica - docente: Callegari - (4 maggio 2022)

Lezione 24

Successioni e serie di numeri complessi

19+64

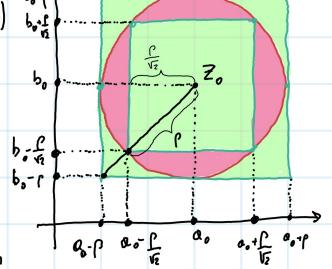
DEF. 1) DATI Z= a, thie C

E (PO DEFINIAMO:

 $I_{z_0}(\rho) = \{z = a + b \in C \mid |z - \overline{z_0}| < \rho\}$ $J_{z_0}(\rho) = \{z = a + b \in C \mid |a - a_0| < \rho \in b - b_0 < \rho\}$

CHIAMEREMO IZ. (P) INTORNO SFERICO DI ZO DIRAGGO P (ZONA COLORATA IN ROSA IN FIGURA)

E J. (P) INTORNO QUADRATO DI ZO DI AMPIEZZA P (ZONA COLORATA IN VERDE INFICURA)


055.4 CON SEMPLICI CALCOLI (VEDIFIGURA)

SI TROVA CHE

PER OGNI POO E PER OGNI ZOE C.

IN PARTICULARE, FISSATO ZOE SINOTI CHE

COMUNQUE SI PRENDA UN SUO INTORNO DI UNO DEI

DUE TIPI, È SEMPRE POSSIBILE TROVARE UN INTORNO DELL'ALTRO TIPO IN ESSO CONTENUTO.

VEDREMO CHE, GRAZIE A QUESTO, LA TOPOLOGIA SU C DA ESSI INDUTTA È LA STESSA.

UNA VOLTA STABILITO CHI SONO GLI INTORNI DI UN PUNTO, SIAMO IN GRADO DI DEFINIRE I CONCETTI DI INTERNO, ESTERNO, FRONTIERA, ECC. ESATIAMENTE COME SI ERA GIÁ FATTO DU R. AD ESEMPIO, DATI ACCE ZEC, DIRE CHE Z E INTERNO AD A SIGNIFICA DIRE CHE ESISTE PO TALE CHE I2(P) CA . LASCIANO ALLO STUDENTE IL COMPITO DI DEFINIRE IL RESTD DEI CONCETTI. SI NOTI CHE, GRAZIE ALL'OSS.1, VSARE IZ(P) O JZ(P) PORTA SEMPRE ALLI STESSI RISULATI DEF.2 DATA UNA SUCCESSIONE (Zn) A VALORI IN C E DATO ZEC, DIREMO CHE lim Zn = Z, O EQUIVALENTE MENTE CHE Z, -> 2 DER h-+00 SE SUCCEDE CHE: YEZO, DEFINITIVAMENTE IN N SI HA 12, - 7 < E. PROPOSIZIONE 1 DATA LA SUCCESSIONE (Zn) = (on+ hi) A VALORI IN C E DATO Z = Q+bi e C, E EQUIVALENTE AFFERMARE CHE (1) 7, -7 PER Note. (2) an > a E bn > b PER n + 0. DIMO BASTA OSSERVARE CHE: (1) => YEO, DEFINITIVAMENTE IN h, Zn & I = (E)

E CHE:

(2)
$$\rightleftharpoons$$
 \$770, DEFINITIVAMENTE IN N, $Z_n \in \mathcal{J}_{\frac{n}{2}}(z)$

QUINDI LA LORO EQVIVALENZA É CONSE GUENZA IMMEDIATA DEU (055.7)

PER LE SUCCESSIONI A VALORI IN C LA HACGIOR PARTE DEI TEOREMI BIÀ

DIMOSTRATI PER LE SUCCESSIONI IN R . LA VERIFICA VIENE L'ASCIATA ALLO STIDENTE.

QUI CI LIMITIAMO, COME ESEMPIO, A DIMOSTRARE IL SEGUENTE:

TEO.1 DATE LE SUCCESSIONI $(Z_n) = (a_n + b_n i) = (S_n) = (a_n + f_n i)$,

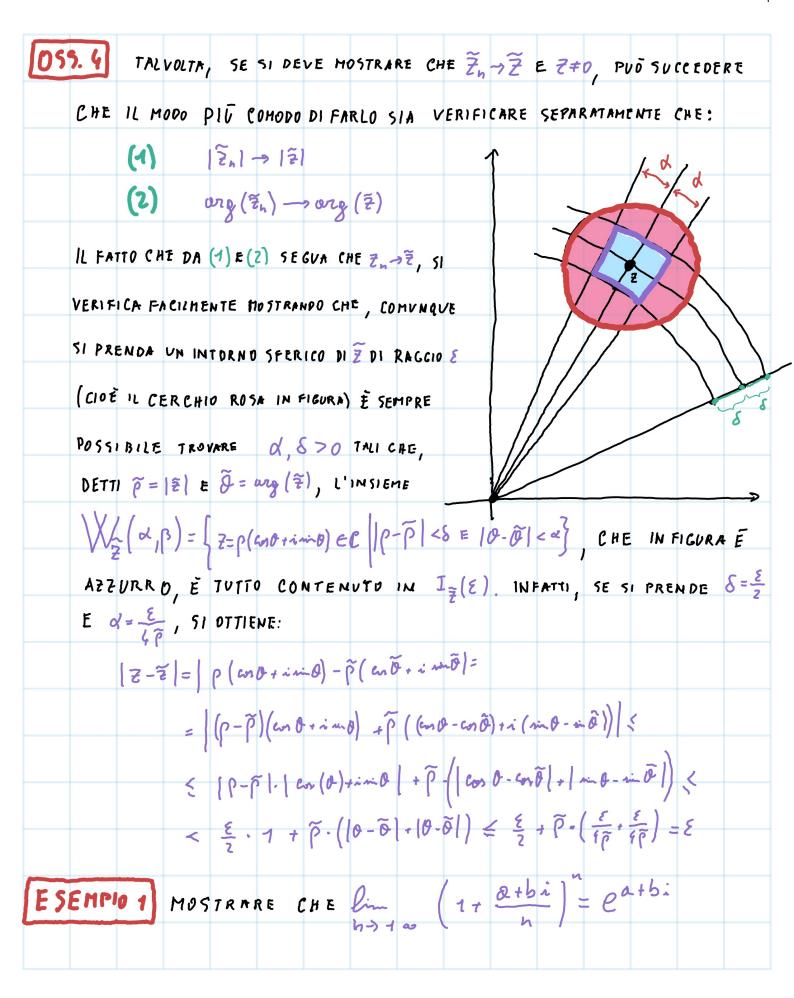
A VALORI IN C , TALI CHE $Z_n \rightarrow \overline{z} = a_1b_n \in C$ E $S_n \rightarrow S = a_1 + f_n i \in C$.

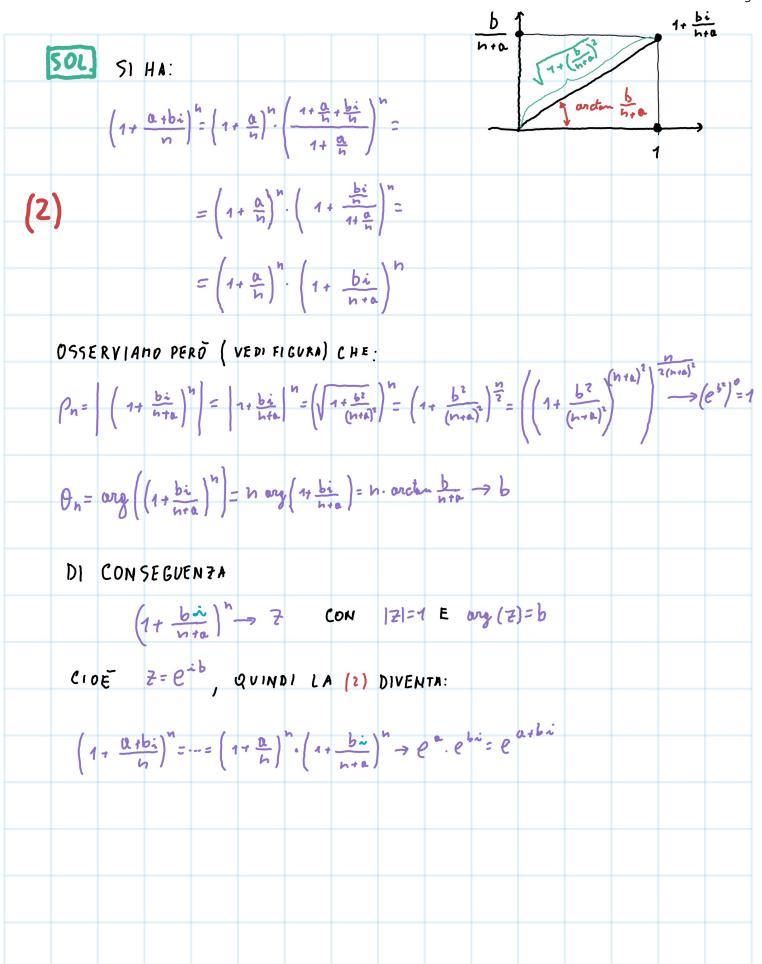
ALLORA $Z_n \cdot S_n \rightarrow Z_n \cdot S_n$

DIMO GRAZIE ALLA PROPOSIZIONE 1, DA $Z_n \rightarrow \overline{z} = S_n \rightarrow S$ SEGUE CHE:

(1) $a_n \rightarrow a_1$ $b_n \rightarrow b_1$ $d_n \rightarrow d_1$ $f_n \rightarrow G$.

HA ALLOR A, SICCOME:

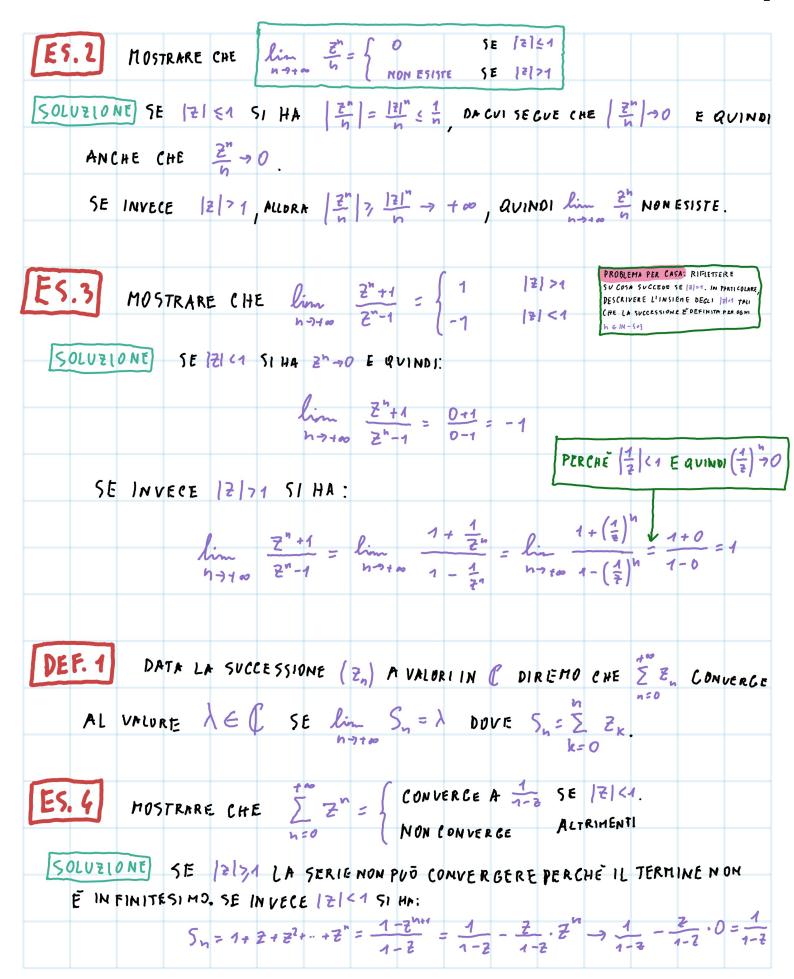

 $Z_n \cdot S_n = (a_n + b_n i) \cdot (d_n + f_n i) = (a_n d_n - b_n f_n) + (a_n f_n + d_n b_n) \cdot i$,


E INOLTRE, GRAPIE A (1), SI HA

 $a_n d_n - b_n f_n \rightarrow a_1 d_n - b_1 f_n \rightarrow a_2 d_n + d_n b_n \rightarrow a_1 d_n + d_n b_n$

POSSI AMO DI MUOVO INVOCARE LA PROPOSIZIONE 1 E OTZEMBRE CHE:

 $Z_n \cdot S_n = (a_n + b_n i) \cdot (a_n + b_n i) \cdot i = Z_n \cdot S_n - i$



Analisi Matematica 2 - CdL Matematica - docente: Callegari - (6 maggio 2022)

Lezione 25

Successioni e serie di numeri complessi (II)

ES. 1 MOSTRARE CHE lim Z" = { 0 SE 1214 SE Z=1 NON ESISTE IN OGNI ALTRO CASO (1) SOLUZIONE SE ZICA ALLORA 121" - O. DI CONSEGUENZA ANCHE 12-0 - O, PERCHE | Z"-0|= |Z" = |Z" - 0. CIO SIGNIFICA CHE Z" - 0. SE INVECE 12 > 1 51 HA 12 " - + . QVINDI Z" NON PUT AVERE LIMITE FINITO PERCHE SE FUSSE Z" -> Z DOVREBBE ESSERE ANCHE |Z|"=|Z"|-)Z|=|R, IN CONTRADDIZIONE COL FATTO CHE 121"-> + ... RESTA DA STUDIARE IL CASO 121=1 IN TAL CASO, SE Z= ALLORA, PER DONI MEIN SI HA Z=1 E QUINDI Z=1 SE INVECE | 2 = 1 MA 2 + 1, SI HA: | Zn+1-2n = | Zn. (2-1) = | z | n. | 2-1 = 1 -1 | 2-1 | = 12-1 | QUINDI lim | z = = | = | = | = 0 (2) E DI CONSEGUENZA NON PUO ESISTERE ZOE (TALE CHE 2" - ZO PERCHE ALTRIMENTI SI AVREBBE ANCHE Z" -> Z. EQUINDI SI OTTERREBBE (2" -2" - 0 IN CONTRASTO CON LA (1). QUESTO COMPLETA LA VERIFICA CHE VALE (4),

	05	5.1	P	ER 1	LE '	9ER1E	Æ	TERM	ואו (COMP	LESS	i V	ALGO	ono (CIRC	A)
						VLTK1										
	1	NON	51	ARE	ΗØ	A DI	405	TRAF	کدا	SUB	1 TO	TVT	1.	1 <i>A</i> 50	oL0	
						EMIE							'			
	υ	TILE	. PI	RF	arl() E 1	L SE	GUE	N7E	(ov	vio}	LEI	ኅ / ነ / ነ			
											•					
	LEI	1111	1		DATE	(o.,) E	(bn) 5	VCCE	551	ONI	A VI	4 LOR	1 /N	IR.
						neIN							_			
(3)	\(\sum_{n=0}^{\frac{1}{2}} \text{Z}_n															я b
	DIMO		5	ANO		5,)	(ጏ")	E (J,)	LE S	VCC E S	SIONE	DELL	e somi	ne Fla	VITE
	C)]	∑ ₹	n, Σ	o _h E	Σbn	RIS	PETTIV	AMEN	τ£ .	51 HA	:				
				5,	= 2,	+ 2,+	+ ₹,,	= (a	(نه ط	+ (a,+	b, i).	· · · · · · · · · · · · · · · · · · ·	an+L	, i)=		
				- n		(Q0+0										
	DI	CON	ise G	VEN7	A :											
					(Sn-	» Z = 0	146;	(=)	(1,-	0- E	Ju >	6)				
	CI	te e	qvi	VALE	AD A7	FERHAR	F (3) .								

TE	0.4	(CR	. CON	/, As s ú	OLVTA)	DATA	LA ·	succes	SIDN	E (3	h) A	VALORI	IN	\mathcal{C}_{\perp}
									ΣZn						,
011	10	SIC	COME	12	n 2 = (a1,6	2 h	PER	OGNI	nel	N SI	ከ/ተ:			
				0 <	an	513	w 1	Ē	O	٤ (b,	151	24			
	Di coi	vsegu	EN3A	, GRA	315	AL C	R. DEL	CONF	RONTO,	PALL	CON	VERGI	ID ASM	21	۲, ۱
	SEGU	/E qui	ELLA D I	Σ 0	, E	Σ	b _n .	MA	SICCOME	PFR	LE SE	RIE /	t TERMI	M]]	ı IR
	SAP	PIANO	CIĂ C	HE I	L CR	TERI	o DELL	A Col	NV. #55	OLVIA	VÆL	e, Po:	SSIAMO	CONC	Cluder
				L _n E	Z bn	Co	NVERO	30 H O	E qui	MDI,	PER	11 LE	MM#1	CONV	frg e
	ANCI	HE	Σzn.											(4)	
~	7											+ **			3
E5.		PER	CLAVALI	VAL	DR)	DI Z	EEC	CON	IVERCE	LA	serie	\(\sum_{n=1}^{\infty} \)	1/4 (1:	t 1/2)	Zh
SOL						VE	DIAMO F	er q	UALI Z	$\epsilon \mathcal{C}$	CONV	ERGE	LA S	ERIE	₹
	DEI	MODU	Li					,							
(5)					\[\sum_{n=1}^{2} \]	175	1+ 1/h2)n,	Zn						
	ALLI	t Qv	ALE,	E S S E	NDO ,	A TEI	RHINI	POS	ıTIVI,	POS	SI AMO	APP	LICARE	11	
	CRI	TERIO	DELL	AR	ADIC	E. S	ı HA		Í						
	V	1-5	7+ 1/2	n ³ , 7	z h	= 7	in.	(1+	1 h	. 2		→ C	.]		

DI CONSEGUENZA (5) È SICURAMENTE CONVERCENTE SE CIZICA, CIOÈ SE IZICÉ. QUINDI, GRAZIE AL CR. DELLA CONV. ASSOLUTA, SE 1214 ANCHE LA (4). INVECE IL FATTO CHE LA (5) DIVERGA PER 12/2 NON CI DA ALCUNA INFORMAZIONE SUL COMPORTAMENTO DI (6). PER NOSTRARE CHE (4) NON CONVERGE FACCIAMO INVECE VEDERE CHE IL SUOTERMINE NON E INFINITESIMO, MOSTRANDO ANZI CHE IL SUO MODULO TENDE A +00. INFATTI SE |Z|> 1/2, PRENDIANO LEIR TALECHE |2| > 27 1/2, E ABBIANS: $\left| \frac{1}{h} \left(1 + \frac{1}{h^2} \right)^{\frac{3}{2}} \right| = \left| \frac{|z|}{\lambda} \right|^{\frac{1}{n}} \cdot \left(\lambda \cdot \left(1 + \frac{1}{h^2} \right)^{\frac{3}{2}} \right) - \frac{1}{2} \left(+ \infty \right) \cdot \left(\lambda \cdot \left(1 + \frac{1}{h^2} \right)^{\frac{3}{2}} \right) + \infty$ $\left| \frac{1}{h} \left(1 + \frac{1}{h^2} \right)^{\frac{3}{2}} \right| + \infty$ $\left| \frac{1}{h} \left(1 + \frac{1}{h^2} \right)^{\frac{3}{2}} \right| + \infty$ QVINDI \$\frac{1}{5}\fr RIMANE DRA DA STUDIARE COSA SUCCEDE QUANDO 121= 1, CIDE Z= e-1+16. NEL CASO PARTICOLARE D= 0, CIOÈ Z= 1, LA SERIE È A TERMINI POSITIVI E SI HA: $\frac{1}{h}\left(\frac{1}{4} + \frac{1}{h^2}\right)^{\frac{1}{h^3}} \cdot \left(\frac{1}{e}\right)^{\frac{h}{h}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}} - \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{2h^4}} + \frac{1}{2h^4}e^{\frac{1}{h^2}-\frac{1}{2h^4}} + \frac{1}{2h^4}e^{\frac{1}{h^2}-\frac{1}{2h^4}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}-\frac{1}{h^2}} = \frac{1}{h}e^{\frac{3}{h^2}-\frac{1}{h^2}-\frac$ $=\frac{1}{h}e^{-\frac{1}{2h}+O(\frac{1}{h^2})}=\frac{1}{h}\left(1+\left(-\frac{1}{2h}+O(\frac{1}{h^2})\right)+O(\frac{1}{h^2})\right)=\frac{1}{h}\left(1-\frac{1}{2h}+O(\frac{1}{h^2})\right)=\frac{1}{h}+O(\frac{1}{h^2})$ QUINDI SICCOME Z TO DIVERGE, ANCHE LA NOSTRA SERLE DIVERGE PER IL CR. CONF. ASINT. INFINE NEL CASO GENERALE, CIDE CON Z= CD , LA (4) DIVENTA Zan CON an = 1 (1+1/2) "(eib)" = ... = (1 + 0(1/2)) eib" = 1 eib" + 0 (1/2) MA SICCOME & B(1) CONVERGE ASSOLUTAMENTE, LA (4) HA LO STESSO CARATTERE DI: $\frac{\sum_{i=1}^{n} e^{ibn}}{h} = \sum_{i=1}^{n} \left(\frac{\cos(bn)}{h} + \frac{\sin(bn)}{h} \cdot i \right)$ (6)

A QUESTO PUNTO	, SICCOME S	APPIAMO GIĀ CH	E	
		E 200 sin		
COMVERGONO PER				E CONCLUDER
CHE ANCHE (6)	CONVERGE.			0
QUINDI CONVERG	E ANCHE (4).			\mathcal{L}
RIASSUMENDO, L				
				1
PER OGNI 7 TAL				
7=1, CIDE PER	GLI Z [HE APPART	ENCONO		
ALLA ZONA COLORATA	d VERDE NELLA	FIGURA.		

Analisi Matematica 2 - CdL Matematica - docente: Callegari - (9 maggio 2022) Lezione 26 Successioni e serie di numeri complessi (III) DATA LA SUCCESSIONE (an) A VALORI IN (PONIAMO CON CIÒ INTENDIANO ANCHE CHE

P=0 SE ling Viol =+ 10 E

CHE P=100 SE ling Viol = 0 ALLORA PER OCNIFISSATO ZEC LA SERIE ZO a.Z. (a) CONVERGE SE 171< (b) NON CONVERGE SE 171>P. COMINCIAMO DA (.). USEREMO IL CRITERIO DELLA RADICE PER MOSTRARE CHE ZONVERGE, DOPODICHE LA TESISEGUIRÀ GRAZIE ALCRITERIO DELLA CONVERGENZA ASSOLUTA. COMINCIAMO DAL CASO OZ PZ+00. SI NOTI CHE PER OGNI 850 SI HA $|a_{n}z^{n}| = |z| \cdot \sqrt{|a_{n}|} = \frac{\frac{1}{p} + \varepsilon}{\frac{1}{|z|}} \cdot \frac{\frac{1}{p} + \varepsilon}{\frac{1}{p} + \varepsilon} = \frac{\frac{1}{p} + \varepsilon}{\frac{1}{|z|}} \cdot \frac{1}{|z|} = \frac{\frac{1}{p} + \varepsilon}{\frac{1}{|z|}} \cdot \frac{1}{|z|}$ (1) MA POICHE 1214P, CIDE 14 (12), SI PUO SEMPRE SCEGUERE E>O TALE CHE TO THE COMPARE IN FONDU A (1) E STRETTAMENTE MINOREDI 1.

CIÒ SIGNIFICA CHE NELLA (1) C'È SCRITTO CHE VIANZII È DEFINITIVAMENTE
MINORE DI UNA COSTANTE MINORE DI 1. QUINDI \[\sum_{n}^{2} \] CONVERGE GRAZIE
AL CRITERIO DELLA RADICE. DI CONSEGUENZA CONVERGE ANCHE Zanza GRAZIE
AL CRITERIO DELLA CONVERGENZA ASSOLUTA. QUESTO COMPLETA IL CASO OCPCIO.
NEL CASO P = 0 INVECE NON C'E NIENTE DA DIMOSTRARE, MENTRE NEL CASO P=+0
DOBBIANO DINOSTRARE CHE Zº CONVERCE PER DGN (Ze C . MA QUESTO
E IMMEDIATO PERCHE ρ= +00 SIGNIFICA liming VIa. 1=0 CIOE VIa, 1 → 0,
QUINDI QUALSIASI SIA ZEC, SI HA:
$\sqrt{\left O_{n}\cdot Z^{n}\right }=\left \overline{z}\right \cdot\sqrt{\left Q_{n}\right }\rightarrow0<1$
DA CVI SEGUE CHE ZIONZI CONVERCE PER IL CRITERIO DELLA RADICE
E QUINDI ZONVERGE PER IL CRITERIO DELL' ASSOLUTA CONVERGENZA.
QUESTO COMPLETA LA DIMOSTRAZIONE DI (.).
PASSIANO A (6) E COMINCIANO DAL CASO O <p<+∞.< td=""></p<+∞.<>
SICCOME ZI > P SI OTTIENE CHE 1 < 1 = limmy Ten E QUINDI
NON E UN MAGGIURANTE DEFINITIVO DI VILLI QUINDI FREQUENTEMENTE IN M
SI HA VIRGI > 1/21, DA CUI SEGUE CHE:
(2) $ \sqrt{ a_n \cdot z^n } = \overline{z} \cdot \sqrt{ a_n } = \frac{1}{ \overline{z} } $

DALLA (2), ELEVANDO TUTTO ALLA N, SI OTTIENE CHE:
Q,Z" > 1" = 1 FREQUENTEMENTE IN N.
NE SECUE CHE QuZ" NON È INFINITESIMA E QUINDI Zan Z" NON
CONVERGE. QUESTO COMPLETA IL CASO OCPC-0.
OUVIAMENTE SE P=+00 NON C'É NIENTE DA DINOSTRARE, MENTRE
INVECE SE p=0 SI HA limmy VIan = +00, CIDE VIAN NON HA
MAGGIORANSI DEFINITIVI E DI COMSEGUENZA, PER OGNI 7 +0, SI OTTIEME
(3)
PERCHE 13 NON È UN MAGGIURANTE DEFINITIVO.
DALLA (3), ELEVANDO TURTO ALLA N, SI OTTIENE CHE, FREQUENTEMENTE
IN n ANCHE lan. 2"1 >1. DI CONSECUENZA anz +>0 E QUINDI
DEO CHESSERE CONVERGENTE.
ES. 1 STUDIARE, AL VARIARE DI ZE C, LA CONVERGENZA DELLA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

NEL NOSTRO CASO: $Q_n = \frac{1}{n} \left(1 - \frac{2 + c_n \pi_n}{(n-1)!} \right)^{n!}$
$Q_n = \sqrt{1 - (n-1)!}$
QUINDI PER n PARI, CIVE PER N=2K, SI HA COS (ZKT)= 1, QUINDI
$\sqrt{ a_{n} } = \sqrt{\frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa)!}} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{(2\kappa - 4)!}\right)^{(2\kappa - 4)!} = \frac{1}{2\kappa} \cdot \left(1 - \frac{3}{($
INVECE, PER n DISPARI, CIVE PER N=2K+1, SI HA COS ((2K+1) 11) =-1 QUINDI
$ \nabla \mathcal{B}_{N} = \sqrt{\frac{1}{2k+1} \cdot \left(1 - \frac{1}{(2k)!}\right)^{(2k+1)!}} = \frac{1}{2k+1} \left(1 - \frac{1}{(2k)!}\right)^{(2k)!} \longrightarrow e^{-1}$
QUINDI IL RAGGIO DI CONVERGENZA PE DATO DA:
$\frac{1}{\rho} = \lim_{n \to \infty} \sqrt[n]{ a_n } = e^{-1}$
CIOÈ C= C. QUESTO SIGNIFICA CHE, BRAZIE AL TEO. 1, LA SERIE (4) CONVERGE SE Z C MENTRE
DIVERGE SE 7 > 0. SE SHVECE 2 = 0 IL TED. 1 NON SI APPLICA E BISOGNA STUDIARE
IL COMPORTAMENTO "A MANO". PRENDIAMO DUNQUE Z= e · e bi CON DELETT
E CERCHIAMO PER QUALI VALDRI DI D CONVERGE. COMINCIAMO CON 5=0,
OVVERO CON Z = e . LA SÉRIE DIVENTA:
(5) $\sum_{n=1}^{+\infty} \frac{1}{n} \left(1 - \frac{2 + e_n(\pi n)}{(n-1)!} \right)^{n!} \cdot e^n$
CHE É A TERMINI POSITIVI.
SE INDICHIAMO CON A, IL SUOTERMINE GENERICO, PER M DISPARI, CIOÈ PER M=2KH, SI HA:

$$A_{2k+1} = \frac{1}{2k+1} \cdot \left(1 - \frac{1}{(2k)!}\right)^{(2k+4)!} \cdot \frac{1}{2(2k+1)!} \cdot$$

lim K-7+00 S 2 k = lim (D _k + P _k) k-7+00
SI NOTI CHE STABILIRE SE ESISTONO FINITI Lin Du E lin Pu EQUIVALE A STUDIARE
IL CARACTERE DI ZA AZK-1 E ZA AZK, RISPETTIVAMENTE. INOLTRE, GRAZIE A (7)
SI HA CHE A2K & (1)2K QUINDI E AZE CONVERGE, CIDE lim P. ESISTE FINITO.
QUESTO SIGNIFICA CHE IL CARATTERE DI (5) COINCIDE CON QUELLO DI Z AZX-1.
MA GRAZIE A (6) SICCOME TO O(1) CONVERGE, IL CARATIERE DI E AZE-4 E
LO STESSO DI TON CHE NON CONVERGE, QUINDI (5) MON CONVERGE.
INFINETRATTIANO IL CASO Z= e·e 6: CON be (0,711). LA SERIE DA STUDIARE QUINDIÈ:
(8) $\sum_{h=1}^{+\infty} \frac{1}{h} \left(1 - \frac{2 + e_n(tr_h)}{(h-1)!}\right)^{h!} \cdot e^h \cdot \left(cos(bn) + i \sin(bn)\right)$
SI NOTI CHE SE , FISSATO b INDICHIAMO CON B, IL TERMINE M-ESIMO DI (8),
E CONTINUIANO AD INDICARE CON A, IL TERMINE N-ESIMO DI (5), SI HA:
$B_{n} = A_{n} \cdot \left(\cos (nb) + i \sin (nb) \right)$
DI CONSEGUENZA Bn = An E QUINDI, RAGIONANDO COME PER LA (5), SITROVA
CHE ZB 2 CONVERGE E QUINDI IL CARATTERE DI (8) COINCIDE CON QUELLO DI ZB 2x-4;
CHE, GRAZIE A (6), SI PUT SCRIVERE:
(9) $\sum_{k=1}^{+\infty} \left(\frac{1}{2k-1} + O\left(\frac{1}{k^2}\right) \right) \cdot \left(\cos(bk) + i \sin(bk) \right)$
A QUESTO PUNTO, OSSERVIAMO (HE:

$\sum_{i} \sigma\left(\frac{1}{k}\right) - \left(\cos\left(bk\right) + i\sin\left(bk\right)\right)$
k = 1
CUNVERGE GRAZIE AL CRITERIO DELLA CONV. ASSOLUTA, PERCHE:
$\left \sigma\left(\frac{1}{k^2}\right) \cdot \left(\operatorname{Cos}\left(b \right) + i \sin \left(b \right) \right) \right = \left \sigma\left(\frac{1}{k^2}\right) \right = \sigma\left(\frac{1}{k^2}\right)$
DI CONSEGUENZA IL CARATTERE DI (9) E UGUALE A QUELLO DI
$\sum_{k=1}^{+\infty} \frac{1}{2k-1} \left(\cos(bk) + i \sin(bk) \right)$
CIOÈ DI:
$\sum_{k=1}^{\infty} \frac{\left(Con(bh) + \frac{sin(bk)}{2k-1} \cdot i\right)}{2k-1}$
CHE CONVERGE PERCHE, GRAZIE AL CRITERIO DI ABEL, SAPPIAMO GIÀ CHE SONO
CONVERGENTI LE DUE SERIE REALI:
$\frac{\sum_{k=1}^{+\infty} \frac{\cos(bk)}{2k-1}}{\sum_{k=1}^{+\infty} \frac{\sin(bk)}{2k-1}}$
X=1 2x-7 h=1 Cx-7
QUINDI (8) CONVERGE PER OGNI be(0,117).
DUNQUE RIASSUMENDO LA NOSTRA SERIE (4) CONVERGE SE ESOLO SE
D= { Z ∈ C Z ≤ C MM COM Z ≠ e}
TEO.2
PER OGNI ZE C LA SERIE TO CONVERGE AL VALURE 2.
DIMO
ABBIAMO GIÀ DINOSTRATO CHE QUESTO È VERO NEL CASO REALE E ABBIAMO OSSERVATO
CHE IN HODO DEL TUTTO KNALO GO SI RIESCE A DIMOSTRARE CHE \(\sum_{k=0}^{\frac{(-1)^k}{(2k)!}} \color 2^k \in \frac{(-1)^k}{(2k+1)!} \chi^2
k=0

	CONVERGONO A COSX E MIX RISPETTIVAMENTE, PER OGNI X &IR.
	INOLTRE, IL FATTO CHE ZON CONVERGA PER OGNIZER SEGUE SUBITO DAL TEO. 1
	PERCHE IL SUO RAGGIO DI CONVERGENZA PE +00 PERCHE:
	$\lim_{n \to \infty} \sqrt{\frac{1}{n!}} = \lim_{n \to \infty} \sqrt{\frac{1}{n!}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = \frac{1}{100} = 0$
	MOSTRIANO DRA CHE LA TESI VALE SE Z= Yi. SI HA:
	$\frac{+\infty}{\sum_{h=0}^{\infty} (\lambda Y)^{h}} = \lim_{h \to +\infty} \left(1 + (\lambda Y) + \frac{(\lambda Y)^{2}}{2!} + \frac{(\lambda Y)^{3}}{3!} + \frac{(\lambda Y)^{4}}{4!} + \dots + \frac{(\lambda Y)^{2h}}{(2h)!} + \frac{(\lambda Y)^{2h+4}}{(2h)!} \right) = \frac{1}{\sum_{h=0}^{\infty} (\lambda Y)^{h}} = \lim_{h \to +\infty} \left(1 + (\lambda Y) + \frac{(\lambda Y)^{2}}{2!} + \frac{(\lambda Y)^{3}}{4!} + \frac{(\lambda Y)^{4}}{4!} + \dots + \frac{(\lambda Y)^{2h+4}}{(2h)!} + \frac{(\lambda Y)^{2h+4}}{(2h)!} + \dots + \frac{(\lambda Y)^{2h}}{(2h)!} + \dots + ($
	$=\lim_{h\to 7+\infty}\left(\left(1+\frac{(i\gamma)^2}{2!}+\frac{(i\gamma)^4}{4!}+\dots+\frac{(i\gamma)^{2h}}{(2n)!}\right)+\left((i\gamma)+\frac{(i\gamma)^3}{3!}+\dots+\frac{(i\gamma)^{2h}}{(2n+1)!}\right)\right)=$
	$= \lim_{n \to \infty} \left(\frac{\sum_{k=0}^{n} (ix)^{2k}}{\sum_{k=0}^{n} (2k)!} + \sum_{k=0}^{n} \frac{(ix)^{2k+4}}{(2k+4)!} \right) =$
	$=\lim_{h\to +\infty} \left(\sum_{k=0}^{N} (-4)^k \frac{y^k}{(2k)!} + i \sum_{k=0}^{N} \frac{(-4)^k}{(2k+4)!} \right) = \cos y + i \sin y = e^{iy}$
	SE ORA MUSTRIAMO CHE PER UCMI Z, SE C VALE L'IDENTITÀ
•)	$\left(\frac{\sum_{n=0}^{+\infty} \frac{2^n}{n!}}{n!}\right), \left(\frac{\sum_{n=0}^{+\infty} \frac{5^n}{n!}}{n!}\right) = \sum_{n=0}^{+\infty} \frac{(2+5)^n}{n!}$
	ALLORA POTREMO CONCLUDERE PERCHE UTILIZZANDOLA CON Z= 1 E 5=27 SI OTTIEN
	$\sum_{i=0}^{\infty} \frac{(x+x,\lambda)}{(x+x,\lambda)} = \left(\sum_{i=0}^{\infty} \frac{y_{i}}{y_{i}}\right) \cdot \left(\sum_{i=0}^{\infty} \frac{(x,\lambda)}{y_{i}}\right) = G_{x} \cdot G_{x\lambda} = G_{x+x,\lambda}$
	QUINDI DIMOSTRIANO (10): (CONTINUA NELLA LEZ. 27

Analisi Matematica 2 - CdL Matematica - docente: Callegari - (11 maggio 2022) Lezione 27 Serie sui complessi (IV) - Topologia di R^n (... CONTINUA DALLA LEZ.Z6) DOBBIANO DIMOSTRARE CHE YZ, S & C SI HA: $\sum_{n=0}^{+\infty} \frac{\left(\overline{z}+5\right)^n}{n!} = \left(\sum_{n=0}^{+\infty} \overline{z}^n\right) \cdot \left(\sum_{n=0}^{+\infty} \frac{5^n}{n!}\right)$ (1) $A_{n} = \left(\frac{\sum_{p=0}^{n} \frac{z^{p}}{p!}}{\sum_{p=0}^{n} \frac{z^{p}}{q!}}\right) = \sum_{p=0,...,n} \frac{z^{p} \cdot 5^{q}}{p! \cdot q!} = \sum_{q=0}^{n} \frac{z^{p} \cdot 5^{q}}{p! \cdot q!} = \sum_{q=0,...,n} \frac{z^{p} \cdot 5^{q}}{p! \cdot q!} = \sum_{q=0}^{n} \frac{z^{p} \cdot 5^{q}}{p! \cdot q!} = \sum_{q=0,...,n} \frac{z^{p} \cdot 5^{q}}{p!} = \sum_{q=0,...,$ SI NOTI CHE: $= \sum_{K=0}^{K=0} \frac{1}{5} \frac{1}{6} \frac{1}{5} \frac{1}{6} \frac{1}{5} \frac{1}$ E CHE: $B_{n} = \sum_{k=0}^{n} \frac{(z+s)^{k}}{k!} = \sum_{k=0}^{n} \left(\frac{1}{k!} \cdot \sum_{p+q=k} \frac{k!}{p!q!} \cdot z^{p} \cdot s^{q}\right) = \sum_{k=0}^{n} \left(\sum_{p+q=k} \frac{z^{p} \cdot z^{q}}{p!q!}\right)$

IN PARTICOLI	IRK SI HA!				
	b . 7) >	2 P. 59	/	PPIAMO CHE \(\frac{1}{\infty} \frac{(\frac{1}{31} + 15)}{\infty} \rightarrow \text{CONVERGE}
An	$= B_n + \sum_{n=1}^{\infty}$	Prq = W	P] · 9!		LA SUCCESSIONE DELLE SUE SOMME FINITE SI ME $S_{24} - S_{3} \rightarrow 0$
QUINDI	K	qen		H2 N44	
	211	2 P. 59	2n	121°-1519	121°-1519
An - Bn =	Prg=K	P! . 9!	F 19:	P! 9!	K=H04
1	k=n+1 pin qin]	K=n+1 PEV		K-hot
	$\sum_{k=n+4}^{2h} \left(\frac{1}{k!} \sum_{p+q} p+q\right)$	k! . 121°	. 5 9 - 2 1	([71+151)k	→ O /
=	k=n+4 P+9:	pi.di	KEN	K!	
	١				
QUESTO DIMOST	RA (2) E QUINDI	ANCHE (4)			
QUESTO DINOST	RA (2) E QUINDI	ANCHE (1)			
QUESTO DIMOST	ra (2) E QUINDI	ANCHE (1)			