Metodi Matematici - Lez. 9

1 Itolo nota 23 ottobre 2018 (9.30-11.15) - docente: Prof. **Emanuele Callegari** - Università di Roma **Tor Vergata**

[TEO.1] (CONVERBENZA MONOTONA) Sie ECIRⁿ minurelile e rie (f.) nom

una mecessione di funzioni definite m E, sommabili e mon negative,

tole che:

1) VneIN fn. (1) > fn(x) q.o.

2) syn fr () de = > < + 00

Allra della f: E -> IR la funzione definito q. J. de f(u) = lin f. (u),

ti ha che f è sommabile e \ \ \f(x) dx = lim \ \\ \eart_n (a) dx.

1 Oss 1 Omettereme le dimetarsione del Teoreme 1, ma vogliant alment for notore che le l'ijoleri (1) bothe a gorantire che:

 $\lim_{n\to\infty} f_n(x)$ with $q.\sigma$.

Infetti, se per ogni ne IN definioner $F_n = \{x \in E \mid f_{n+1}(x) < f_n(x)\}$, le (1)

rignifica proprie che $m(E_n) = 0$.

Overvieur inoltre ele

((fn(x)) = crescente => (fn+1(x) > fn(n) per ogni n = IN) =>

(=) (VneIN x & En) (=) x & UE,

Ma poiche $m(E_n) = 0$ per ogni n, anche $m(\tilde{V}E_n) = 0$ e grindi

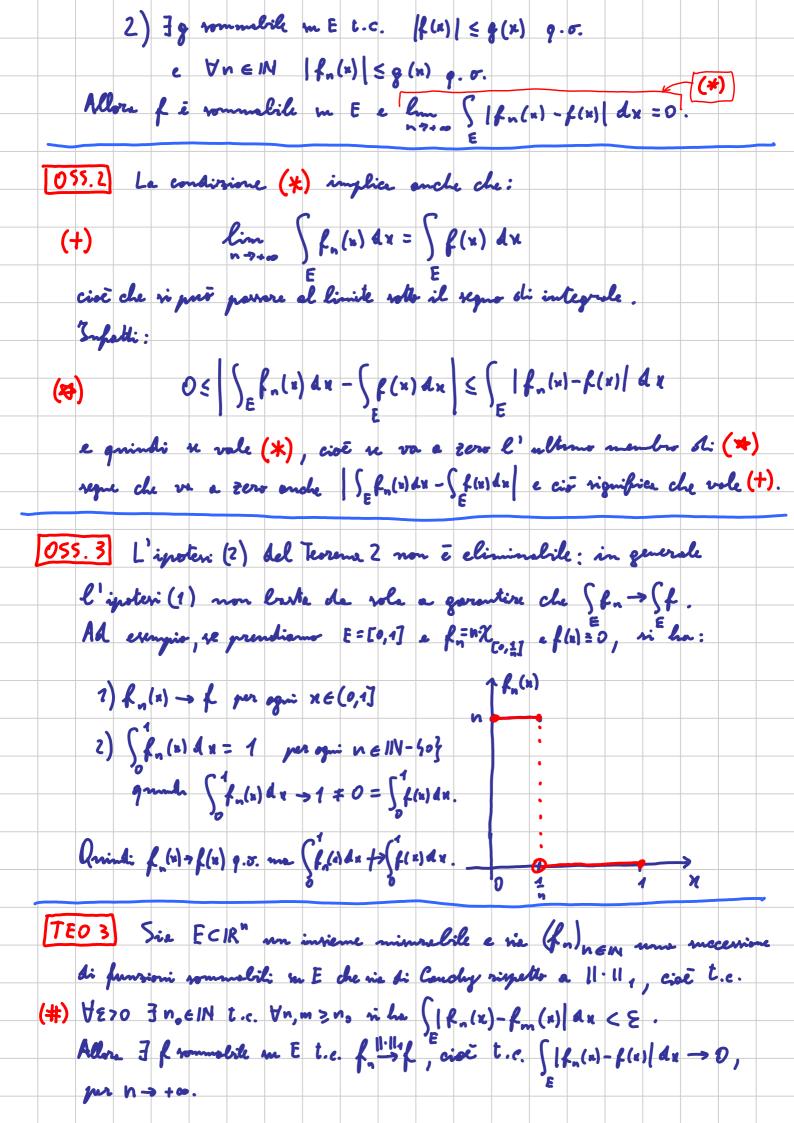
 $(f_n(i))_{n\in\mathbb{N}}$ simble evere crescente $q.\sigma.$

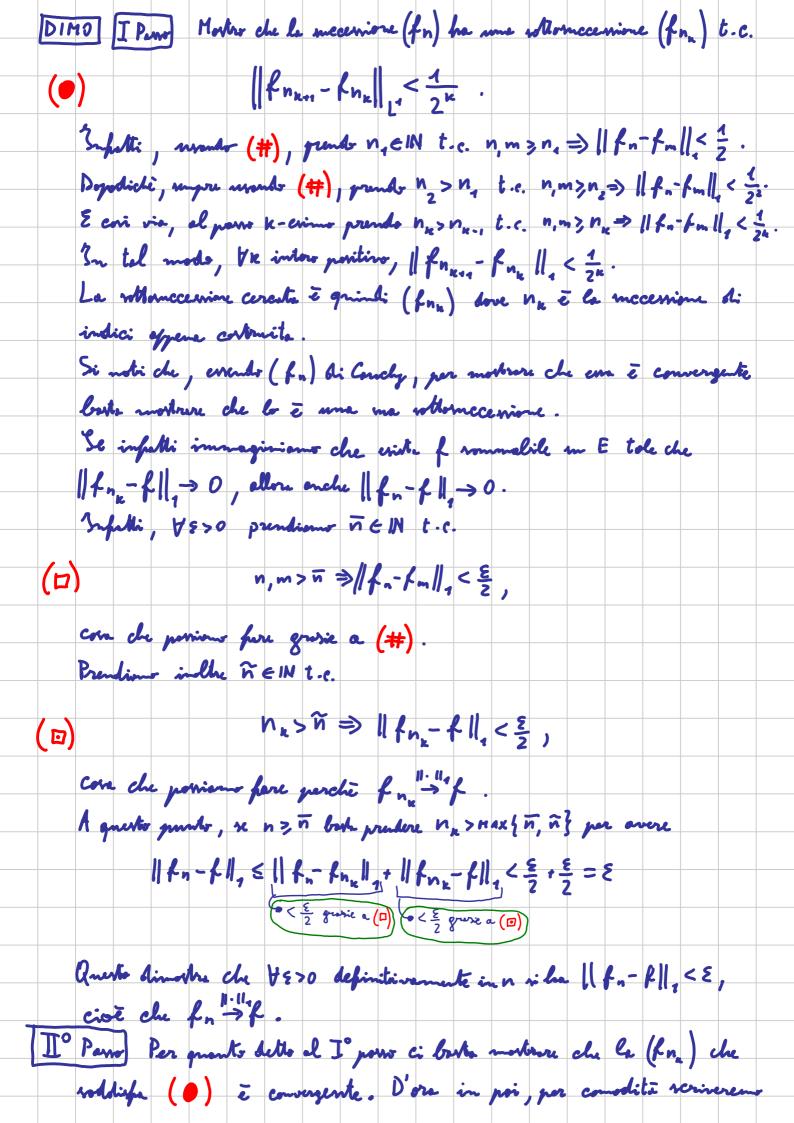
Quindi anche lim for(x) existe q.o.

TED. 2 (CONVERGENZA DOMINATA) Sie ECIR^h un invience minnelole

e via (fn)nen una successione di funcioni sommulili m E C. e.

1) 3f: E - IR* t.c. lim f (n) = f(n) 9.0.





f k invece che f n quindi la nortra sottomeanire è (f k)
e, ger ogni k interr prolin, roddispa:
$\int f_{k+1}(x) - f_k(x) dx < \frac{1}{2^k}$
Poiche, elle fine, applicherens il Teorema delle convergense dominata,
Arbbiano colonirei 2 ese: una $f(x)$ tele che $f_n(x) \rightarrow f(x)$ q. σ .
e une $h(x)$ romabile tele cle $ f(x) < h(x)$
ger ognik.
A tole regro, per ogni $n \in \mathbb{N} - \{0\}$ posioner $g_n(x) = \sum_{n=1}^{\infty} \left f_n(n) - f_n(n) \right $ a overvisor che volgos le progrietà:
1) ∀n ∈ W-40} g, (e) ≥ 0 per ogni x ∈ E
2) VneIN-103 gn+ (x) = gn(x) per ogni x E E.
3) Vn = INI- (0) [gn (n) dx < 1.
La (1) $\bar{\epsilon}$ ovvir. La (2) vele perché $g_{n+1}(x) = g_n(x) + \left f_n(x) - f_n(x) \right \ge g_n(x)$ Infine la (3) vele perché:
$\int_{E} g_{n}(x) dx = \int_{E} \frac{\sum_{k=1}^{N} f_{k}(x) - f_{k}(x) }{ f_{k}(x) - f_{k}(x) } dx = \sum_{k=1}^{N} \int_{E} f_{k}(x) - f_{k}(x) dx \leq \sum_{k=1}^{N} \frac{1}{2^{k}} < 1.$
E E K=1 K=1 E K=1
Poicté volgano (1),(2) e (3) pour applieure il Tereme delle convergense
monotona e dire che la funsione a cui $g_n(x)$ consege quaturalmente, civé $g(x) = \sum_{k=1}^{+\infty} f_{k+1}(x) - f_k(x) \in \text{soundile e sodolista } \int_{\mathbb{R}^n} g(x) dx \leq 1$
In perticulare de ció regne che g(s) <+00 q.o., cioè de:
Z f k(x) - f x(x) Converge 9.5.
De quests regne che (fx(1)) è di Conchy q. 5. perché
$ f_{R}(u) - f_{h}(u) \le f_{R}(u) - f_{R+p}(u) + f_{R+p}(u) - f_{R+p}(u) + f_{h-p}(u) =$
$= g_{h-1}(u) - g_{k-1}(u) \xrightarrow{\circ} 0 g. \Rightarrow . \begin{array}{c} G_{RA21E} & AL & FATIO \\ CHE & IL & LIMITE & g(u) \\ \end{array}$
e questo viquifica che per guni ogni x vi ha:

