Gara di Geometria del 30/10/2021

(osservazioni e alcune soluzioni)

HO PREPARATO QUESTA GARA CON L'INTENZIONE (E LA CONVINZIONE) CHE FOSSE ABBASTANZA FACILE.

PURTROPPO COSÌ NON È STATO E DI QUESTO MI SCUSO.

DETTO CIÒ VI PROPONGO LE SOLUZIONI DETTA GLIATE

DEGLI ULTIMI TRE PROBLEMI (CHE METTERO ALLA

FINE) E QUALCHE CONSIDERAZIONE IN DROINE

SPARSO SUGLI ALTRI PROBLEMI.

PROB. 16 NELLE MIE INTENZIONI DOVEVA ESSERE UN
PROBLEMA MOLTO SEMPLICE; IL TERZO AMBOLO AL VERTICE
DEVE ESSERE STRETTAMENTE COMPRESO TRA LA SOMMA
E LA DIFFERENZA DEGLI ALI RI DUE.

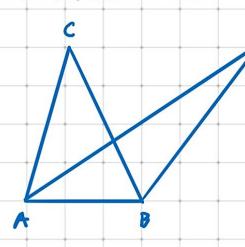
PROB.8 QUESTO PROBLEMA SEMBRA IL CLASSICO PROBLEMA
DI GEOMETRIA ANALITICA, RISOLVIBILE CON VAGONATE
DI CALCOLI. CI TEMEVO QUINDI A MOSTRARE CHE
NON È COSI, CIDÈ CHE ESISTE UNA SOLUZIONE FURBA.
L'OSSERVAZIONE CRUCIALE È CHE:

IL FATTO CHE ABCO E IL RETTANGOLO ABBIANO LA STESSA

AREA SI DIMOSTRA OSSERVANDO CHE IL CAMBIO DI SCALA CHE TRASFORMA L'ELLISSE IN UNA CIRCONFERENZA TRASFORMA ENTRAMBI IN UN QUADRATO CIRCOSCRITTO ALLA CIRCONFERENZA .

PROB 6 E 13 QUESTI PROBLEMI HANNO IN COMUNE L'IDEA

PI BASE (MOLTO SEMPLICE): SE I DUE TRIANGULI ABC E ABC' IN FIGURA HANNO LA STESSA BASE E LA STESSA AREA ALLORA HANNO ANGHE LA STESSA ALTEZZA E QUINDI CC' // AB.



(PURTROPPO PERO LA SCUOLA ABITUA TROPPO I NOSTRI STUDENTI A CONSIDERARE L'AREA SOLO COME QUALCOSA DA CALCOLARE E NON COME UNO STRUMENTO PER DINOSTRARE, COME INVECE ERR IN QUESTO CASO)

PROB. 18 BASTA PENSARE ALLO SVILUPPO (VEDI FIGURA).

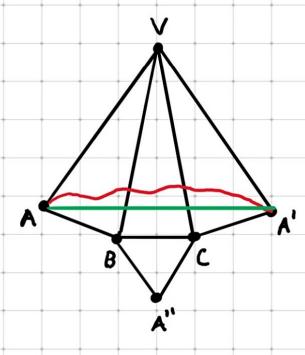
SE IL PERCORSO (ROSSO) CHE

GIRA INTORNO ALLA MONTAGNA

E LUNGO COME AV ALLORA

AA' & AV = AV , QVINDI

AVA' \$60" DACUI SEGUE



N.B. VA TENUTO ANCHE IL CASO LINITE 70° CHE CORRISPONDE AL CASO IN CUI IL PERCORSO ROSSO COINCIDE CON AA'.

PROB 17 L'OSSERVAZIONE CRUCIALE E CHE:

(1) $A\hat{V}B + C\hat{V}D = B\hat{V}C + D\hat{V}A$

USANDO LA QUALE SI PUO TROVARE AÛB VISTO CHE SONO NOTI GLI ALTRI TRE.

LA DIMOSTRAZIONE DI (1) RICORDA QUELLA DELLA SOMMA DI LATI OPPOSTI NEI QUADRILATERI CICLICI E SI BASA SUL SE GUENTE

LEMAN PRENDIAMO UN QUALSIASI SPIGOLO LATERALE

DELLA PIRAMIDE ADESEMPIO VB E SIANO

P E Q 1 PUNTI DI TANGENZA DELLA SFERA

SULLE DUE FACCE CHE HANNO VB COME SPIGOLO,

ALLORA SI HA:

PVB = QVB

DIMO DEL LEMMA

BASIA NOTARE CHE LA SIMMETRIA RISPETTO AL PIANO CHE PASSA PER VB E PER IL CENTRO DELLA SFERA, SCAMBIA TRA LORO I DUE ANGOLI

PER DIMOSTRARE (1) SIANO DRA P.Q. RES I PUNTI DI TANGENZA DELLA SFERA SULLE FACCE AVB, BVC, CVD E DVA, RISPETTI VAMENTE.

CHE CONCLUDE LA DIMUSTRAZIONE.

NOTE FINALI

TROVATE UN VIDEO CON LO SVULCIMENTO DETTAGLIATO DEL PROB. 12 LINCATO NELLA PAGINA DELLO STAGE.

INOLTRE HO FATTO A PARTE LE SOLUZIONI
DETTAGLIATE DI PROB 19 PROB 20 E PROB 21
CHE VI AGGIUNGO MELLE PAGINE SUCCESTIVE.

EHANUELE CALLEGARI

19.

Una sfera S è sospesa su una piazza e il sole ne proietta l'ombra a terra. Inizialmente l'ombra è un'ellisse di area 6325. Dopo un po' di tempo l'angolo formato dai raggi solari con la normale al suolo è aumentato di un angolo α tale che tan $\alpha = \frac{5}{12}$ e nel frattempo l'area dell'ombra è diventata 7800. Quale sarebbe l'area dell'ombra se i raggi solari fossero perpendicolari al suolo?

SOLUZIONE

IL NOSTRO PUNTO DI PARTENZA È LA FORMULA VISUALIZZATA
IN FIGURA 1: LA FIGURA 3 GIACE SU UN PIANO ABCO CHE FORMA
UN ANGOLO O COLPIANO ABEP E T È LA SUA PROIEZIONE SUL
PIANO ABEP PROIETTANDO NELLA DIREZIONE PERPENDICOLARE AL
PIANO ABCO. ALLORA VALE LA RELAZIONE:

(1) AREA (3) = AREA (1) - con q

TALE FORMULA È BANALMENTE VERA SE J È UN TRIANGOLO CON

LA BASE PARALLELA AD AB PERCHÈ IN TAL CASO T È UN TRIANGOLO

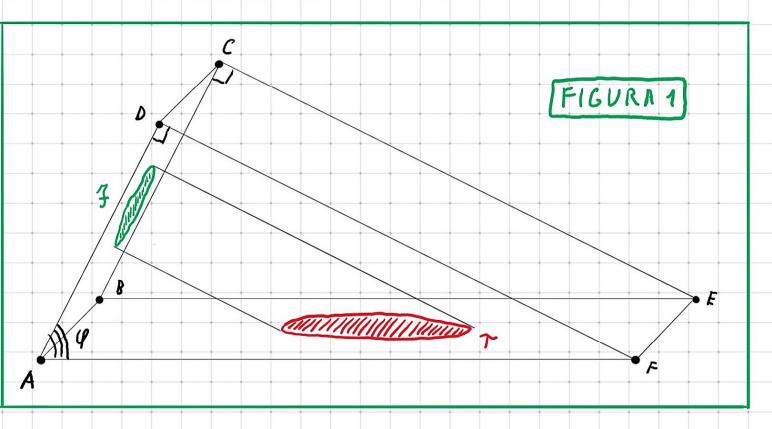
CHE HA ANCORA LA STESSA BASE, MA CON L'ALTEZZA MOLTIPLICATA PER

HA ALLORA LA (1) VALE ANCHE SE J È UN POLIGONO, VISTO CHE OGNI

POLIGONO È SCOMPONIBILE IN TRIANGOLI CON BASE PARALLELA AD AB.

INFINE LA (1) CONTINUA A VALERE PERTUTTE QUELLE FIGURE J LA CUI AREA

SI PUÒ OTTENERE COME LIMITE DI AREE DI POLIGONI APPROSSIMANTI.



POSSIAMO ORA APPLICARE LA (1) NEL CASO CHE 3 SIA IL CERCHIO
MASSIMO DELLA SFERA SOSPESA. LA MOSTRA INCOGNITA E AREA(3).
INDICHIAMO ORA CON Q L'ANGOLO FORMATO NELL'ISTANTE INIZIALE TRA
IL PIANO DEL SUOLO E IL PIANO PERPENDI COLARE AI RAGGI DEL SOLE.
ANCHE Y NON CI E NOTO, HA APPLICAMOO LA (1) OTTENIAMO LA RELAZIONE:

(2)
$$AREA(3) = 6325 \cdot con 4$$

RIAPPLICANDO LA (1) QUANDO L'AREA DELL'OMBRA È DIVENTATA 7800 SI OTTIENE

(3)
$$AREA(3) = 7800 \cdot cos(\varphi + \alpha)$$

DOVE & E UN ANGOLO DEL PRIMO QUADRANTE TALE CHE tom & = 5 12 E QUINDI

(4)
$$rac{5}{13} = cos \propto = \frac{12}{13}$$

DRA, COMBINANDO (2) E (3) SI OTTIENE:

DA CUI SEGUE :

$$\frac{6325}{7800} = \cos \alpha - \sin \alpha \cdot \tan \varphi = \frac{12}{13} - \frac{5}{13} \tan \varphi$$

CIDE :

$$ton \varphi = \frac{1}{5} \left(12 - \frac{6325}{600} \right) = \frac{7}{24}$$

DI CONSEGUENZA COS $\varphi = \frac{24}{25}$, COSICCHE DALLA (2) SI OTTIENE:

$$AREA(3) = 6325 \cdot \frac{24}{25} = 6072.$$

In un tetraedro ABCD le coppie di spigoli opposti sono uguali. Più precisamente sappiamo che AB = CD = 35 e AC = BD = 44, ma dei due restanti spigoli sappiamo solo che AD = BC ma non ne conosciamo la lunghezza ℓ . Quanti sono i possibili valori interi per ℓ ?

SOLUZIONE

LA CONDIZIONE CHE SPIGOLI

OPPOSTI SONO UGUALI EQUIVALE

AD AFFERMARE CHE TUTTE LE

FACCE SONO UGUALI (VEDI FIGURA).

DI CONSEGUENZA (VEDI FIGURA)

NELLO SVILUPPO DEL TETRAEDRO

LE 2 SEMIRETTE ROSSE USCENTI

DA D SONO ALLINEATE . ALLO

STESSO MODO SONO ALLINEATE LE

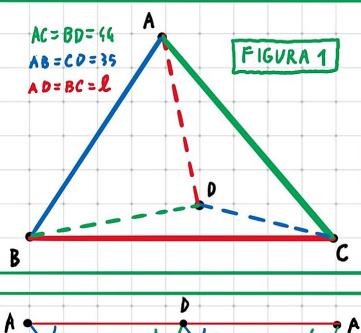
2 SEMIRETTE BLU USCENTI DA B

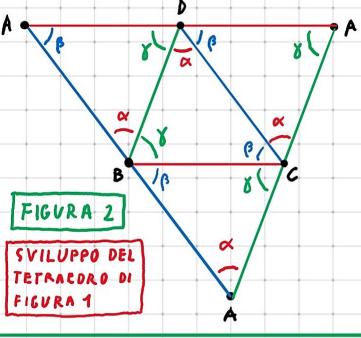
E LE 2 SEMIRETTE VERDI USCENTI

DA C VISTO CHE IN DGNI VERTICE LA SOMMA DEI TRE ANGOLI DI CUI E VERTICE E 180°.

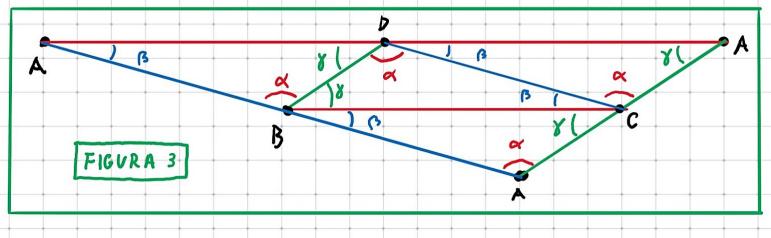
OSSERVIAMO ORA CHE IL TRIANGOLO

A CUI LE 4 FACCE SONO UGUALI DEVE
ESSERE ACUTANGOLO PERCHE ALTRIMENTI
SE VI FOSSE UN ANGOLO OTTUSO
IL CORRISPONDENTE TETRAEDRO





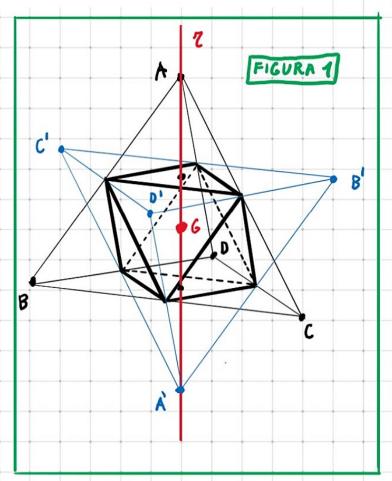
DOVREBBE AVERE UND SVILLEPPO COME QUELLO DI FIGURA 3, DOVE \$ >90°.



НΛ	V	N	TE	TRA	E DI	20	CO	N T	ALE	5	VIL	U PP	N	NON	E	SIST	E: P	ROI	/AN	DO A	RI	2051	RUI	RL	P	
																	SI									
"C	H	lV	D	ERI	.0"	. 11	٧F	h 77	1 1	NE	LV	ERT	CE	5	D	SIH	} A (* > (3+8	E	QUE	570	mpe	015	E D	1
AC	(1)57	A	RE	LE	2	4	SEM	IRI	EŢ	TE	Ros	SE	ı	A	PI	GAN	100	LUN	60	15	EGI	7E N	71	>B 6	DC.
				12020															-			-				
																	4 F						601	ME	IN	
PI	16	UK	N (L ,	11	76		KAE	UR	0	71	Kr (.07) [KUI	766	56/	N E A	PR	BLI	EMI.					
1		VAL	0	RI	BU	ON	l	PE	R	l		SON	10	q	ווטו	VOI	TU	TTI	E 5	OLI	au	ELL	T	411		
Ce	HE		11	. 7	RI	NG	0	LO	A	/E	NTE	L	ATI		35	4	í 4	ED	l	Ĕ	ACU	TAN	GOL	0,		
C	10	Ē	Ó	(VE	111	CH	E	50	0 1)(5FA	NO	:													
			-			_		0	2			,		2					\	>						
			-)	_	l	<		44	+ ۲	35		-		P				MAS					
-			+				-	61	2	,	0 2	+ 3	٤2		6		()	P	TAGO							
-			+		- (7 4	_	`	•	7)	7													
C	1	0 (2	:																						
			Ì		1	71	1	<	1	۲ <	< 3	16	1													
CI	0	F																								
					76	. 6		(0	1	5	6,2														
												Ť						0							_	
												RI	1	N	TER	I D	1	l	VA	NNO	Di	, i	77	A	5	6
E	Q	V	Ir	UD	1	501	V		38	9	•															
1			+																							

Sia S un ottaedro regolare di volume 5040, sia r la retta che passa per i centri di due facce opposte di S e sia T il solido che si ottiene ruotando S di 180° attorno ad r, Trovare il volume di $S \cap T$

POSSIANO SEMPRE IMMAGINARE DI
OTTENERE IL NOSTRO OTTAEORO T
VNENDO I PUNTI MEDI DEGLI SPIGOLI
DI UN TETRAEDRO REGOLARE
ABCO, CHE INDICHEREMO CON T1,
AVENTE IL VERTICE A SULLA RETTA 2,
E (OVVIAMENTE) [L BARICENTRO G
CHE COINCIDE COL CENTRO DI T
INOLTRE (VEDI FIGURA 1) SE INDICHIANO
CON T2 IL TETRAEDRO A'B'C'D',
SIMMETRICO DI T4 RISPETTO AL
BARICENTRO G SI OTTIENE



 $T = T_1 \wedge T_2$

SI NOTI CHE SIA T, CHE T,

HANNO VOLUME DOPPIO DI T, CIOÈ 10080.

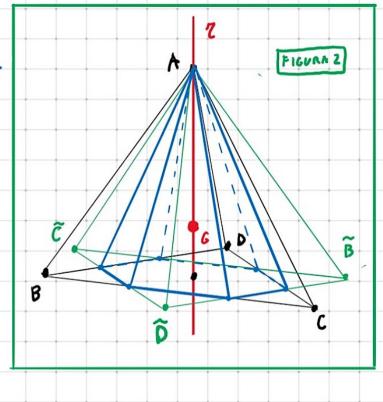
SE ORA INDICHIANO CON S, E S,

I SIMMETRICI DEI TETRAEDRI T,

E T, RISPETTO ALLA RETTA T,

SI OTTIENE:

QUINDI:



SI NOTI (VEDI FIGURA 2) CHE T. n.S. E UNA PIRANIDE B. A BASE ESAGONALE IL CUI VOLUME E 2 DI QUELLO DI T., CIOF 6720.

ANALOGAMENTE TINS, E LA PIRANIDE B. SIMMETRICA DI B. RISPETTO A G.

QVINDI:

HA Q1 1 02 F EVIDENZIATO
IN NERD IN FIGURA 3 DOVE Q1
E LA PIRAMIDE BLU E P2 LA PIRAMIDE

VERDE .

SICCOME G DIVIDE L'ALTEZZA DI
CIASCUNA PIRAMIDE IN 2 PARTI
DI CUI UNA È TRIPLA DELL'ALTRA,
CIASCUNO DEI 2 TRONCHI DI PIRAMIDE

CHE COMPONGONO O, 1002 HA VOLUME:

$$V = \left(\left(\frac{3}{4} \right)^3 - \left(\frac{1}{2} \right)^3 \right) \circ (VOLUHE PIRANIDE) =$$

$$=\frac{19}{64} \cdot 6720$$

QUINDI

VOLUME DI TAS=

= VOLUME DI O, 7 P2=

= 2. V=

 $= 2 \cdot \frac{19}{64} \cdot 6720 = 3990$

