Analisi Matematica 1

docente: Ghezzi - codocente: Callegari

Cognome:	 A.A. 2021-2022
Nome:	 2 Marzo 2022

Dato l'insieme $A = \left\{ \left(\frac{n+2}{n+1} \right)^{n+1} \mid n \in \mathbb{N}, \ n \geq 3 \right\},$ determinare, se esistono, inf A, sup A, min A e max A, motivando le risposte date.

2. Calcolare:
$$\lim_{n \to +\infty} n^2 \cdot \left(\sqrt{2 + \sqrt{3 + \cos \frac{1}{n}}} - 2 \right)$$
.

3. Confrontare l'ordine di infinito delle seguenti successioni:

$$a_n = e^{n^3}$$
 $b_n = \left(1 + \frac{1}{n}\right)^{n^4}$ $c_n = \left(1 - \frac{1}{n}\right)^{-n^4}$ $d_n = n!$

- **4.** Data $f(x) = \sqrt{1 + x^3}$
 - (a) calcolare $f'_{+}(-1)$;
 - (\mathbf{b}) dire se è Lipschitziana su [-1, 1];
 - (c) dire se è uniformemente continua su [-1, 1];
 - (d) dire se è uniformemente continua su $[1, +\infty)$;
 - (e) dire se è Lipschitziana su $[1, +\infty)$.
- 5. Trovare l'ordine di infinitesimo per $x \to 0$ di:

$$\left(e^{-2x^2} - \cos 2x\right) \cdot \ln\left(1 + x + x^2\right) + e^{x^{100}} - \sqrt[3]{1 + 4x^5}$$

- 6. Si consideri la funzione $f(x) = x^4 + x^2 + \alpha \cdot (\cos x 1)$ dipendente da un parametro $\alpha > 0$.
 - (a) Per $\alpha = 2$ fare uno studio completo del grafico di f(x).
 - (b) Per $\alpha = 2$ dire quante sono le soluzioni dell'equazione f(x) = 0.
 - (c) Dire per quali $\alpha > 0$, l'equazione f(x) = 0 ha una sola soluzione.
 - (d) Per $\alpha = 4$ dire quante sono le soluzioni dell'equazione f(x) = 0.