ANALISI MATEMATICA 1

LAUREA TRIENNALE IN MATEMATICA

 $5\ \mathsf{LUGLIO}\ 2022$

II Appello sessione estiva 2021/22

DOCENTE R. GHEZZI

CODOCENTE E. CALLEGARI

PER LO SVOLGIMENTO DELL'ESAME È VIETATO L'USO DI CALCOLATRICI E CELLULARI. È ammessa invece la consultazione dei propri appunti del corso.

Tutte le risposte vanno adeguatamente dimostrate, eventualmente enunciando dei risultati visti a lezione.

SI RICORDA CHE PER VERIFICARE UN ASSERTO OCCORRE UNA DIMOSTRAZIONE, MENTRE PER CONFUTARLO BASTA UN CONTROESEMPIO.

Esercizio 1 [8 punti]

Confrontare, per n che tende a $+\infty$, le seguenti successioni

$$a_n = \sqrt[100]{n+1}, \quad b_n = (\log n)^{100}, \quad c_n = \log(1+n^{100}), \quad d_n = (\log n)^{\log(\log n)}.$$

Esercizio 2 [4 punti]

Si consideri la funzione

$$f(x) = \sin x + \sin\left(x + \frac{1}{1+x^2}\right).$$

- Mostrare che sup $\{f(x) \mid x \in \mathbb{R}\} = 2$.
- Mostrare che f non ammette massimo.

Esercizio 3 [6 punti]

Sia $f:[0,+\infty[\to\mathbb{R}$ una funzione continua e tale che $\lim_{n\to+\infty}(-1)^nf(n)=-3$. Dimostrare che

- 1. $]-3,3[\subset f([0,+\infty[);$
- 2. esiste una successione $\{x_n\}_{n\in\mathbb{N}}\subset [0,+\infty[$ tale che $\lim_{n\to+\infty}x_n=+\infty$ e per ogni n vale $f(x_n)=0$;
- 3. se in più f è derivabile su $]0, +\infty[$, allora esiste una successione $\{z_n\}_{n\in\mathbb{N}}\subset [0, +\infty[$ tale che $\lim_{n\to+\infty}z_n=+\infty$ e per ogni n vale $f'(z_n)=0$.

Esercizio 4 [10 punti]

Si consideri la funzione

$$f(x) = \frac{x}{x - 1} + \log x.$$

- Determinare il dominio, il segno della funzione, i limiti agli estremi del dominio, l'immagine di f. La funzione è limitata?
- Determinare eventuali asintoti, massimi/minimi e dire se sono relativi o assoluti.

GIRARE

— Determinare l'insieme di continuità e di derivabilità di f.

— Quanti zeri ha la funzione?

Tracciare un abbozzo del grafico.

Esercizio 5 [8 punti]

Sia $h:[a,b]\to\mathbb{R}$ una funzione continua su [a,b] e derivabile su]a,b[. Supponiamo che esistano

$$\lim_{x \to a^{+}} \frac{h(x) - h(a)}{x - a} = \ell_{1}, \quad \lim_{x \to b^{-}} \frac{h(x) - h(b)}{x - b} = \ell_{2}.$$

Dimostrare che

(i) se $\ell_1 < 0$ allora a è un punto di massimo relativo per h;

(ii) se $\ell_2 > 0$ allora b è un punto di massimo relativo per h;

(iii) se $\ell_1 < 0$ e $\ell_2 > 0$ allora esiste un punto di minimo interno ad]a,b[.