Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.1 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale $A \sqrt{2}$ B non esiste C 0 D $\frac{1}{2}$ E $+\infty$ F 2 Quesito n. 2 Il $\lim_{n \to +\infty} e^n \ln (1 + e^{-n})$ è uguale a: $A = \frac{2}{3} B + \infty C_0 D = \frac{1}{6} E = \frac{1}{3} F_1$ Quesito n. 3 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a: A non esiste in \mathbb{R}^* B 2 $\mathbb{C} \frac{1}{2}$ D $+\infty$ E 1 \mathbb{F}_0 Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n)$ $\boxed{ \textbf{A} \left(\ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} } \ x^2 \ln^2 x \quad \boxed{ \textbf{C} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{D} } \left(\ln x \right)^{2 \ln x} \quad \boxed{ \textbf{E} } \ 2x \ln x \quad \boxed{ \textbf{F} } \left(\ln x^2 \right)^{\ln x^2}$ Quesito n. 6 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)$? $oxed{A} e^3 \quad oxed{B} \ 1 \quad oxed{C} + \infty \quad oxed{D} \ 3 \quad oxed{E} \ \text{non esiste} \quad oxed{F} \ 0$ Quesito n. 7 Il $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+1} \right)$ vale A_{-1} $B_{-\frac{1}{2}}$ $C_{+\infty}$ D_0 $E_{\frac{1}{2}}$ F_1 Quesito n. 8 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; **(b)** $\sin x = o(x) \text{ per } x \to 0;$ (c) $\sin x \approx \tan x \text{ per } x \to 0$ Allora quelle vere sono: A solo (a) e (c) B solo (a) C solo (c) D nessuna E solo (b) F tutte Quesito n. 9 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e}$ è uguale a: $f A e^e \quad f B e \quad f C \sqrt{e} \quad f D \sqrt{e^e} \quad f E + \infty \quad f F \ 1$ Quesito n. 10 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (a) B solo (a) e (b) C solo (c) D solo (b) E nessuna F solo (a) e (c) Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=2^n \ln n$, $b_n=n^5 \ln n$ e $c_n=2^n$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \ \mathbf{e$ Quesito n. 12 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ si considerino le affermazioni: (a) $a_n = o(n^4) \text{ per } n \to +\infty;$ (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Quesito n. 13 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). Quesito n. 14 $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a: $A \frac{7}{3} B \frac{2}{5} C_{+\infty} D_0 E \frac{7}{5} F \frac{2}{3}$ Quesito n. 15 Calcolare $\lim_{x\to 0^+} \frac{(1+\sin^2\frac{1}{x})\ln(1+x)}{e^{x^2}-1}$ A non esiste B 1 C $-\infty$ D 0 E $+\infty$ F -1Quesito n. 16 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (b) e (c) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (a), (b) e (c) $oxed{D}$ solo (d) $oxed{E}$ solo (c) $oxed{F}$ nessuna Quesito n. 17 Sia A un sottoinsieme non vuoto di \mathbf{R} . Quali, tra le seguenti affermazioni, sono vere \mathbf{r} (a) se A è aperto allora la sua frontiera è vuota;
(b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione A solo (b) B solo (c) C solo (b) e (c) D nessuna E solo (a) F tutte

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.2 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x). $\boxed{A} 3 \cos^2\left(\frac{1}{x}\right) \boxed{B} 3 \sin^2(\ln x) \cos(\ln x) \boxed{C} \cos^3(\ln x) \boxed{D} \frac{3}{x} \sin^2(\ln x) \cos(\ln x) \boxed{E} \frac{3}{x} \cos^2(\ln x) \boxed{F} \sin^3\left(\frac{1}{x}\right)$ Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ C } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ D } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ c_n = o(a_n) \quad \boxed{ E$ Quesito n. 3 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale a: A 0 B non esiste in \mathbb{R}^* C 1 D $\frac{1}{2}$ E $+\infty$ F $-\infty$ Quesito n. 4 Il $\lim_{n \to +\infty} n \left(e^{\frac{3}{n}} - e^{\frac{2}{n}} \right)$ è uguale a: $A_0 B_{\frac{1}{3}} C_1 D_{+\infty} E_{\frac{2}{3}} F_{\epsilon}$ Quesito n. 5 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? $oxed{A} \ 3 \quad oxed{B} + \infty \quad oxed{C} \text{ non esiste} \quad oxed{D} \ e^3 \quad oxed{E} \ 1 \quad oxed{F} \ 0$ Quesito n. 6 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(c_n) \quad \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \in b_n = o(c_n)$ Quesito n. 7 Il $\lim_{n\to+\infty} \left(1+\frac{1}{en}\right)^{n+\pi}$ è uguale a: **Quesito n. 9** Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (d) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (a), (b) e (c) $oxed{D}$ solo (b) e (c) $oxed{E}$ nessuna $oxed{F}$ solo (c) Quesito n. 10 Sia $A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}$. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A (b) -2 è un punto di accumulazione per A;
(c) 2⁻¹⁰⁰ è un punto di accumulazione per A.
Allora quelle vere sono: A nessuna B solo (b) C tutte D solo (a) E solo (a) e (b) F solo (a) e (c) Quesito n. 11 Si considerino le affermazioni: (a) $e^x - 1 \approx x \text{ per } x \to 0$; (b) $e^x - 1 = o(x) \text{ per } x \to 0;$ (c) $e^x - 1 = x + o(x) \text{ per } x \to +\infty$ Allora quelle vere sono: A solo (b) e (c) B solo (a) C solo (c) D solo (b) E solo (a) e (c) F nessuna **Quesito n. 12** Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$ (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$. Allora quelle vere sono: A tutte B nessuna C solo (a) e (c) D solo (c) E solo (a) F solo (a) e (b) $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} \quad \text{è uguale a:}$ Quesito n. 13 $A \frac{7}{2} B \frac{2}{2} C \frac{2}{5} D_0 E_{+\infty} F \frac{7}{5}$ Quesito n. 14 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale $A \sqrt{2}$ $B \frac{1}{2}$ $C + \infty$ D 0 E non esiste F 2Quesito n. 15 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a Quesito n. 16 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni (a) in ogni caso C è compatto; (b) in ogni caso ${\cal C}$ contiene tutti i suoi punti di accumulazione (c) in ogni caso C non ha punti interni A (a) è vera e (b) e (c) sono false (a), (b) e (c) sono tutte false (c) è vera e (a) e (b) sono false (d), (b) e (c) sono tutte vere (d) e (d) sono false (e) sono tutte vere (e) e (false) false (fal una è falsa 🖺 (b) è vera e (a) e (c) sono false Quesito n. 17 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)(e^x-1)}{\ln(1+x^2)}$ $A + \infty$ $B - \infty$ C = 0 D non esiste E - 1 F = 1Compito n.2 Cognome: Nome: Matr:

•	0				
n.1 n.2 n.3	n.4 n.5 n.6 A A A B B B C C C D D D E E E F F F	n.7 n.8 n.9 A A A A B B B B C C C D D D D E E E E F F F	n.10 n.11 n.12 A A A A B B B B C C C C D D D D E E E E F F F	n.13 n.14 n.15 A A A A B B B B C C C C D D D D E E E E F F F	n.16 n.17 A A B B B C C D D D E E F

```
Compito n.3 del test di preselezione per il I esonero
                                                                                                                                                             Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^{n^2}, b_n = 3^n e c_n = 2^n, si ha:
Quesito n. 2 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
A = \frac{1}{2} B + \infty C = 0 D = \sqrt{2} E = 2 E = 0 non esiste
Quesito n. 3 II \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
A non esiste in \mathbb{R}^* B 2 C 0 D +\infty E \frac{3}{2} F \frac{1}{2}
Quesito n. 4 Il \lim_{x \to 0} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
A_{-1} B_{\frac{1}{2}} C_1 D_{+\infty} E_0 F_{-\frac{1}{2}}
Quesito n. 5 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
f A = -1 f B = 1 f C = +\infty f D = non \ esiste f E = -\infty f F = 0
                     \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5n^{\ln n}} \quad \text{è uguale a:}
Quesito n. 6
A_0 B_{+\infty} C_{\frac{2}{5}} D_{\frac{2}{3}} E_{\frac{7}{5}} F_{\frac{7}{3}}
Quesito n. 7 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 \boxed{ \textcolor{red}{\mathbf{A}} \left( \ln^2 x \right)^{\ln^2 x}} \quad \boxed{ \textcolor{red}{\mathbf{B}} } \ x^2 \ln^2 x \quad \boxed{ \textcolor{red}{\mathbf{C}} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textcolor{red}{\mathbf{D}} } \left( \ln x^2 \right)^{\ln x^2} \quad \boxed{ \textcolor{red}{\mathbf{E}} } \ 2 x^2 \ln |x| \quad \boxed{ \textcolor{red}{\mathbf{F}} } \ 2 x \ln x
Quesito n. 8 Il \lim_{n\to+\infty} \frac{n^2}{3} \left( 1 - \cos \frac{2}{n} \right) è uguale a:
A_{+\infty} B_{\frac{1}{3}} C_1 D_{\frac{2}{3}} E_0 F_{\frac{1}{6}}
Quesito n. 9 Si considerino le affermazioni:
(a) \sin x - x = o(x) per x \to 0;

(b) \sin x \approx x per x \to 0;
(c) \frac{\sin x}{x} \to 0 \text{ per } x \to +\infty
Allora quelle vere sono:
A solo (c) B solo (a) C solo (b) D solo (a) e (c) E tutte F nessuna
Quesito n. 10 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
Quesito n. 11 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
A non esiste B + \infty C e^3 D_0 E_3 F_1
Quesito n. 12 Sia C un sottoinsieme non vuoto di {\bf R}. Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato;
 (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
(c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora:
(a) (b) è vera e (a) e (c) sono false (b) e (c) sono false (c) sono false (d) e vera e (b) e (c) sono false (d) (a), (b) e (c) sono tutte vere (d) 2 affermazioni sono vere ed una è falsa (d), (b) e (c) sono
tutte false F (c) è vera e (a) e (b) sono false
Quesito n. 13 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni
 (a) 1 è un punto di accumulazione per A;
 (b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A.
 Allora quelle vere sono:
A solo (a) B solo (b) C solo (a) e (b) D nessuna E solo (a) e (c) F solo (c)
Quesito n. 14 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[8]{n} e c_n = \ln n, si ha:
Quesito n. 15 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
  (a) a_n \approx b_n \text{ per } n \to +\infty;
 (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo}
  (c) a_n = O(b_n)
\overline{A} solo (a), (b) e (c) \overline{B} solo (c) e (d) \overline{C} nessuna \overline{D} solo (d) \overline{E} solo (c) \overline{F} solo (b) e (c)
Quesito n. 16 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(b) \lim_{n \to \infty} a_n = +\infty;
(c) (a_n) è una successione crescente.
Allora quelle vere sono:
A solo (a) e (b) B solo (c) C solo (a) D tutte E nessuna F solo (a) e (c)
Quesito n. 17 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
oxed{A} + \infty \quad oxed{B} \, e^{\pi} \quad oxed{C} \, e^2 \quad oxed{D} \, e^{e+\pi} \quad oxed{E} \, e^{e\pi} \quad oxed{F} \, 1
n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
                                                             | n.10 | n.11 | n.12 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F |
```

```
Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Compito n.4 del test di preselezione per il I esonero
Quesito n. 1 Calcolare \lim_{x \to 0^{+}} \frac{\ln(1 + \sin^{2} x) \sin \frac{1}{x}}{\ln x}
\underline{\mathbf{A}} non esiste \underline{\mathbf{B}} 0 \underline{\mathbf{C}} 1 \underline{\mathbf{D}} -\infty \underline{\mathbf{E}} -1 \underline{\mathbf{F}} +\circ
Quesito n. 2 Il \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
A \frac{1}{3} B_{+\infty} C_1 D \frac{1}{6} E_0 F \frac{2}{3}
Quesito n. 3 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \boxdot } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \frown } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \boxdot } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(a_n) \quad \boxed{ \boxdot } \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ b_n = 
 Quesito n. 4 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{x}\right)?
A + \infty B e^3 C 0 D non esiste E 1 F 3
Quesito n. 6 Il \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}
A = \frac{1}{2} B = 3 C = \infty D = \frac{3}{4} E = -1 E = \frac{1}{4}
Quesito n. 7 II \lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 - e^2}} vale
A + \infty B \sqrt{2} C = 0 D = \frac{1}{2} E non esiste E = 2
Quesito n. 8 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni:
 (a) A è sempre un intervallo;
 (b) A non ha mai punti isolati;
 (c) il complementare di A è sempre chiuso.
A (c) è vera e (a) e (b) sono false B (a) è vera e (b) e (c) sono false C (a), (b) e (c) sono tutte false D (b) è vera e (a) e (c) sono false E (a), (b) e (c) sono tutte
vere F 2 affermazioni sono vere ed una è falsa
Quesito n. 9 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) \text{ per } n \to +\infty;
 (b) a_n = o(2^n) per n \to +\infty;
(c) (a_n) è una successione crescente
 Allora quelle vere sono:
A solo (c) B solo (a) e (b) C tutte D solo (a) E solo (a) e (c) F nessuna
Quesito n. 10 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a
A e + 1 B e C + \infty D 2e E 1 F e^{e}
Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si has
 \boxed{ \triangle } \ b_n = o(c_n) \ \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{C} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{D} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \mathbf{E} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) 
                                        \lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}
 Quesito n. 12
                                                                                                                 è uguale a
\boxed{\mathbb{A}_{+\infty}} \quad \boxed{\mathbb{B}_{\frac{7}{5}}} \quad \boxed{\mathbb{C}_{\frac{2}{3}}} \quad \boxed{\mathbb{D}_{\frac{2}{5}}} \quad \boxed{\mathbb{E}_{\frac{7}{3}}} \quad \boxed{\mathbb{F}_{0}}
Quesito n. 13 Si considerino le affermazioni:
 (a) e^x - \cos x = o(x) \text{ per } x \to 0;

(b) 1 - \cos x = x + o(x) \text{ per } x \to 0;
 (c) e^x - \cos x \approx x \text{ per } x \to 0.
 Allora quelle vere sono:
A solo (a) B solo (b) C solo (b) e (c) D solo (a) e (b) E nessuna F solo (c)
 Quesito n. 14 Sia A = \mathbf{R} - \{\sqrt{2}\}. Si considerino le affermazioni:
 (a) \sqrt{2} appartiene alla chiusura di A;
 (b) 0 è un punto di accumulazione per A;
 (c) \sqrt{2} è un punto interno per A.
 Allora quelle vere sono
\overline{\Delta} solo (a) e (b) \overline{B} solo (b) \overline{C} solo (a) \overline{D} solo (a) e (c) \overline{E} tutte \overline{F} nessuna

Quesito n. 15 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
Quesito n. 16 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
A - 1 B \frac{1}{2} C 1 D + \infty E - \frac{1}{2} E 0
 Quesito n. 17 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x)
 \boxed{\textbf{A}} \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{\textbf{B}} \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{\textbf{C}} \ -\frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{D}} \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{E}} \ \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{F}} \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} 
n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E
F F F
                                                                                                                   n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D D
E E E E
F F F
                                                                                                                                                         | n.13 | n.14 | n.15 | n.16 | n.17 |
| A | A | A | A | A |
| B | B | B | B |
| C | C | C | C |
| D | D | D | D |
| E | E | E | E |
| F | F | F | F |
                                     n.4 n.5 n.6
A A A
B B B B
C C C
D D D
E E E
F F F
 B B B C C C C D D D
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.5 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a Quesito n. 2 Sia $A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}$. Si considerino le affermazioni (a) 0 è un punto di accumulazione per A; (b) -2 è un punto di accumulazione per A; (c) 2^{-100} è un punto di accumulazione per AAllora quelle vere sono: A tutte B solo (b) C solo (a) e (b) D nessuna E solo (a) e (c) F solo (a) Quesito n. 3 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a: $A\sqrt{e}$ Be^2 Ce D1 Ee^e $F+\infty$ Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n\sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ C } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ D } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ c_n = o(a_n) \quad \boxed{ E$ Quesito n. 5 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? $A_0 B_3 C_{e^3} D_1 E_{+\infty} F_{\text{non esiste}}$ Quesito n. 6 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni: (a) in ogni caso C è compatto; (b) in ogni caso C contiene tutti i suoi punti di accumulazione; (c) in ogni caso C non ha punti interni. Àllora: (a) e (c) sono false (a) e (c) sono false (b) e vera e (a) e (b) sono false (c) e vera e (a) e (b) sono false (b) e (c) e vera e (a) e (b) sono false (b) e vera e (b) e (c) sono false F (a), (b) e (c) sono tutte false Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n)$ Quesito n. 8 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; **(b)** $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n\to+\infty} a_n = +\infty$. Allora quelle vere sono A solo (a) e (b) B tutte C solo (a) D solo (a) e (c) E nessuna F solo (c) Quesito n. 9 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x). $\boxed{ \mathbb{B} \, \frac{e^{\sqrt{2+x^2}}}{2\sqrt{2+x^2}} \quad \boxed{\mathbb{C} \, } \, 2xe^{\sqrt{2+x^2}} \quad \boxed{ \mathbb{D} \, \frac{xe^{\sqrt{2+x^2}}}{\sqrt{2+x^2}} \quad \boxed{\mathbb{E} \, } \, e^{\frac{x}{\sqrt{2+x^2}}} \quad \boxed{\mathbb{E} \, } \, 2xe^{\frac{1}{2\sqrt{2+x^2}}}$ **Quesito n. 10** Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{\mathbb{A}}$ solo (b) e (c) $oxed{\mathbb{B}}$ solo (c) e (d) $oxed{\mathbb{C}}$ solo (a), (b) e (c) $oxed{\mathbb{D}}$ solo (d) $oxed{\mathbb{E}}$ nessuna $oxed{\mathbb{F}}$ solo (c) Quesito n. 11 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a: $A_2 = \frac{1}{2} = C_0 = +\infty$ $E_1 = F_{\text{non esiste in } \mathbb{R}^*$ Quesito n. 12 Il $\lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}}$ vale $A = \frac{1}{2}$ $B + \infty$ $C \sqrt{2}$ D_0 E non esiste E_2 Quesito n. 13 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}$ A = -1 B non esiste $C + \infty$ D 0 E 1 F 3 Quesito n. 14 Il $\lim_{n \to +\infty} e^n \ln (1 + e^{-n})$ è uguale a: $\boxed{\mathbf{A}}_0 \boxed{\mathbf{B}}_1 \boxed{\mathbf{C}}_{\frac{1}{3}} \boxed{\mathbf{D}}_{\frac{2}{3}} \boxed{\mathbf{E}}_{\frac{1}{6}} \boxed{\mathbf{F}}_{+\infty}$ Quesito n. 15 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$. Allora quelle vere sono: A nessuna B tutte C solo (a) e (c) D solo (c) E solo (a) F solo (b) Quesito n. 16 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a: $A \frac{7}{5} B \frac{2}{5} C \frac{7}{2} D \frac{2}{2} E_0 F_{+\infty}$ Quesito n. 17 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale $A + \infty$ B 0 C 1 D - 1 $E - \frac{1}{2}$ $F \frac{3}{2}$ n.13 n.14 n.15
A A A
B B B B
C C C
D D D
E E E E
F F F
 n.4
 n.5
 n.6

 A
 A
 A

 B
 B
 B

 C
 C
 C

 D
 D
 D

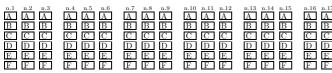
 E
 E
 E

 F
 F
 F
n.10	n.11	n.12
A	A	A
B	B	B
C	C	C
D	D	D
E	E	E
F	F	F

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.6 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(c_n) \in c_n = o(a_n) \qquad \boxed{ \blacksquare } \ a_n = o(c_n) \in c_n = o(b_n)$ Quesito n. 2 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a Quesito n. 3 Il $\lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right)$ è uguale a: $\boxed{\mathbf{A}} \frac{2}{3} \quad \boxed{\mathbf{B}} + \infty \quad \boxed{\mathbf{C}} \quad \boxed{\mathbf{D}} \quad \boxed{\frac{1}{6}} \quad \boxed{\mathbf{E}} \quad \boxed{\frac{1}{3}} \quad \boxed{\mathbf{F}} \quad \boxed{\mathbf{0}}$ Quesito n. 4 Si considerino le affermazioni: (a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$ (c) $e^x - 1 = x + o(x) \text{ per } x \to +\infty.$ Allora quelle vere sono: A nessuna B solo (a) C solo (b) D solo (b) e (c) E solo (a) e (c) F solo (c) Quesito n. 5 Il $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a: $A = \frac{8}{3} = 4 = C = 0$ Quesito n. 6 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ $A_{-\infty}$ B non esiste C_{-1} D 1 E 0 F $+\infty$ Quesito n. 7 Sia $f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}$. Calcolare f'(x). $\boxed{ \boxed{ \mathbb{A} } \ 1 + \frac{1}{x} \quad \boxed{ \mathbb{B} } \ \frac{1}{x^2 \ln^2 \left(1 + \frac{1}{x} \right)} \quad \boxed{ \mathbb{C} } \ - \frac{1}{x^2} \ln \left(1 + \frac{1}{x} \right) \quad \boxed{ \boxed{ \mathbb{D} } \frac{-x}{(x+1) \ln^2 \left(1 + \frac{1}{x} \right)} } \quad \boxed{ \mathbb{E} } \ - \frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{ \mathbb{F} } \ \frac{1}{(x^2+x) \ln^2 \left(1 + \frac{1}{x} \right)}$ Quesito n. 8 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a: $\begin{array}{|c|c|c|c|c|c|}\hline A & e^{\pi} & \hline B & e^{\frac{1}{e}+\pi} & \hline C & +\infty & \hline D & e & \hline E & 1 & \hline F & e^{\frac{1}{e}} \\ \hline \\ \textbf{Quesito n. 9} & \lim_{n \to +\infty} \frac{7 \ln(n+e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n} & \text{è uguale a:} \\ \hline \end{array}$ $A = \frac{2}{3} B_0 C = \frac{2}{5} D = \frac{7}{5} E_{+\infty} F = \frac{7}{3}$ Quesito n. 10 Sia C un sottoinsieme chiuso e non vuoto di ${\bf R}$. Si considerino le affermazioni: (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: A (a), (b) e (c) sono tutte vere (a) e (b) sono false (b) è vera e (a) e (b) sono false (a), (b) è vera e (a) e (c) sono false (a), (b) e (c) sono false (b) è vera e (b) e (c) sono false Quesito n. 11 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale A_{-1} $B_{\frac{1}{2}}$ C_1 $D_{+\infty}$ $E_{-\frac{1}{2}}$ F_0 Quesito n. 12 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A; (b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono A solo (a) e (c) B solo (a) C tutte D nessuna E solo (a) e (b) F solo (b) Quesito n. 13 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)$? $oxed{A}_0$ $oxed{B}_{non \ esiste}$ $oxed{C}_3$ $oxed{D}_1$ $oxed{E}_{e^3}$ $oxed{F}_{+\infty}$ Quesito n. 14 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A non esiste $\boxed{B} \frac{1}{2} \boxed{C} \sqrt{2} \boxed{D} + \infty \boxed{E} 0 \boxed{F} 2$ Quesito n. 15 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: $\boxed{ \underline{\mathbf{A}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ } \ \boxed{ \underline{\mathbf{B}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \ } \ \boxed{ \underline{\mathbf{C}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ } \ \boxed{ \underline{\mathbf{C}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ } \ \boxed{ \underline{\mathbf{E}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ } \ \boxed{ \underline{\mathbf{E}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ } \ \boxed{ \underline{\mathbf{E}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n)$ Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$. Allora quelle vere sono: A solo (a) e (c) B nessuna C tutte D solo (a) e (b) E solo (a) F solo (c) Quesito n. 17 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (a), (b) e (c) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (b) e (c) $oxed{D}$ nessuna $oxed{E}$ solo (d) $oxed{F}$ solo (c) Compito n.6 Cognome: n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E n.1 n.2 n.3
A A A
B B B B
C C C C
D D D
E E E E n.13 n.14 n.15
A A A
B B B B
C C C
D D D
E E E E

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - I Dicer Compito n.7 del test di preselezione per il I esonero	Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 II $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e}$ è uguale a:	
$A\sqrt{e}$ $B\sqrt{e^e}$ Ce^e De $E+\infty$ F_1	
$ \underline{\mathbf{A}} \sqrt{e} \underline{\mathbf{B}} \sqrt{e^e} \underline{\mathbf{C}} e^e \underline{\mathbf{D}} e \underline{\mathbf{E}} + \infty \underline{\mathbf{F}} 1 $ $ \mathbf{Quesito n. 2} \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} \text{è uguale a:} $	
$ \underline{\mathbf{A}} \frac{7}{5} \underline{\mathbf{B}} + \infty \underline{\mathbf{C}} \frac{2}{3} \underline{\mathbf{D}} \frac{7}{3} \underline{\mathbf{E}} \frac{2}{5} \underline{\mathbf{F}} 0 $ $ \underline{\mathbf{Quesito n. 3 ll}}_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}} \text{ vale} $	
$A_0 \xrightarrow{B} \frac{1}{2} \xrightarrow{C} 2 \xrightarrow{D} + \infty \xrightarrow{E} \sqrt{2} \xrightarrow{F} \text{ non esiste}$	
Quesito n. 4 II $\lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}$ è uguale a:	
A 3 B $\frac{1}{2}$ C $\frac{1}{4}$ D -1 E $-\infty$ F $\frac{3}{4}$ Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha:	
Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: A $b_n = o(a_n)$ e $a_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(c_n)$ e $c_n = o(a_n)$ D $a_n = o(b_n)$ e $b_n = o(c_n)$ E $c_n = o(a_n)$	$F(a_n) = a_n = a(b_n)$ $F(a_n) = a(c_n) + c_n = a(b_n)$
Quesito n. 6 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare $f'(x)$.	-(-1)1 -(-1)
$\boxed{\mathbf{A} - \frac{1}{x + x \ln^2 x}} \boxed{\mathbf{B}} \frac{1}{x + x \ln^2 \frac{1}{x}} \boxed{\mathbf{C}} \frac{1}{1 - \ln^2 x} \boxed{\mathbf{D}} - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \boxed{\mathbf{E}} \frac{1}{x^2 - x^2 \ln^2 x} \boxed{\mathbf{F}} \frac{1}{1 + \ln^2 \frac{1}{x}}$	
Quesito n. 7 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:	
(a) $\sup_{n \in \mathbb{N}} a_n = +\infty$;	
(b) $\lim_{n \to +\infty} a_n = +\infty$; (c) (a_n) è una successione crescente. Allora quelle vere sono:	
A tutte B solo (a) C solo (a) e (c) D solo (c) E solo (a) e (b) F nessuna	
Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\begin{bmatrix} A \\ b \\ -a(c_n) \\ a \\ -a(c_n) \\ -a(c_$	$= a(h) \cdot a(h) - a(c)$ $= a(h) \cdot a(h) - a(a)$
	$c(o_n) \circ o_n \circ c(o_n) \longrightarrow c_n \circ c(o_n) \circ o_n \circ c(o_n)$
 (a) se C e chiuso e limitato andra co ancia comparto, (b) se C è chiuso allora ogni successione (a_n) ⊂ C converge; (c) se C è chiuso allora anche il suo complementare è chiuso. 	
Allora:	zioni sono vere ed una è falsa 🖺 (a), (b) e (c) sono
tutte vere F (a) è vera e (b) e (c) sono false	
Quesito n. 10 II $\lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)}$ è uguale a:	
$A = \begin{bmatrix} 2 & B \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} 1 & D \end{bmatrix} \begin{bmatrix} E \end{bmatrix} \begin{bmatrix} 1 & F \end{bmatrix} + \infty$	
Quesito n. 11 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale	
$A - 1$ $B - \infty$ C 1 $D - \frac{1}{3}$ $E - \frac{1}{2}$ E 0 Quesito n. 12 Si considerino le affermazioni:	
Quesito h. 12 Si considerino le altermazioni: (a) $e^{2x} - e^{x} \approx x$ per $x \to 0$; (b) $e^{2x} - e^{x} = x + o(x)$ per $x \to +\infty$;	
(c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono:	
Allora quelle vere sono: $ \underline{A} \text{ solo (b)} \underline{B} \text{ solo (a) e (c)} \underline{C} \text{ solo (a)} \underline{D} \text{ nessuna} \underline{E} \text{ tutte} \underline{F} \text{ solo (c)} $	
Quesito n. 13 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette:	
(a) $a_n \approx b_n \text{ per } n \to +\infty;$	
(b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}$	
(c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$	
A nessuna B solo (d) C solo (b) e (c) D solo (c) E solo (a), (b) e (c) F solo (c) e (d) Quesito n. 14 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x p	
	er i quali è definita, $h\circ f\circ g$ è uguale a
$A (\ln x)^{2 \ln x}$ $B (\ln x^2)^{\ln x^2}$ $C x^2 \ln^2 x$ $D (\ln^2 x)^{\ln^2 x}$ $E 2x^2 \ln x $ $E 2x \ln x$ Quesito n. 15 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni:	
 (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. 	
Allora quelle vere sono: A nessuna B solo (a) C solo (b) D solo (a) e (c) E solo (c) F solo (a) e (b)	
Quesito n. 16 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$	
$x \to 0^+$ $e^ 1$ A 1 B 0 C $-\infty$ D -1 E non esiste F $+\infty$	
Quesito n. 17 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$?	
A 1 B 0 C non esiste D $+\infty$ E 3 F e^3	
Compito n.7 Cognome: Nome: Matr: Matr:	·········
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Compito n.8 Cognome: Nome: Matr:


è uguale a:

 $A_0 = \frac{2}{5} \quad C_{+\infty} = \frac{7}{3} \quad E_{\frac{7}{5}} = \frac{2}{3}$

Quesito n. 17 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x)

 $\boxed{ \textbf{A} \cos^3 \left(\ln x \right) \quad \boxed{\textbf{B}} \sin^3 \left(\frac{1}{x} \right) \quad \boxed{\textbf{C}} \quad \frac{3}{x} \cos^2 \left(\ln x \right) \quad \boxed{\textbf{D}} \quad 3 \sin^2 \left(\ln x \right) \cos \left(\ln x \right) \quad \boxed{\textbf{E}} \quad 3 \cos^2 \left(\frac{1}{x} \right) \quad \boxed{\textbf{F}} \quad \frac{3}{x} \sin^2 \left(\ln x \right) \cos \left(\ln x \right)$

...... Matr:

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.10 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia C un sottoinsieme non vuoto di $\mathbf R$. Si considerino le affermazioni (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in Cfalse F 2 affermazioni sono vere ed una è falsa Quesito n. 2 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 3 Il $\lim_{n \to +\infty} \left(1 - \frac{1}{en} \right)^{en+\pi}$ è uguale a: $A e B e^{-\pi} C_0 D_1 E e^{-e+\pi} F \frac{1}{2}$ Quesito n. 4 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x) $\frac{ [\underline{\mathbf{A}}] }{ \frac{e^{2x}}{1 + e^{x^2}}} \ \, [\underline{\mathbf{B}}] \ \, \frac{2xe^{x^2}}{1 + e^{x^2}} \ \, [\underline{\mathbf{C}}] \ \, \frac{1}{1 + e^{x^2}} \ \, [\underline{\mathbf{D}}] \ \, \frac{1}{2xe^{2x}} \ \, [\underline{\mathbf{E}}] \ \, \frac{1}{1 + e^{2x}} \ \, [\underline{\mathbf{F}}] \ \, \frac{e^{x^2}}{1 + e^{x^2}} \ \, \\ \, \frac{e^{x^2}}{1 + e^{x^2}} \ \, [\underline{\mathbf{E}}] \ \, \frac{1}{1 + e^{2x}} \ \, [\underline{\mathbf{E}}] \ \, \frac{e^{x^2}}{1 + e^{x^2}} \ \, \\ \, \frac{e^{x^2}}{1 + e^{x^2}} \ \, \underline{\mathbf{E}}] \ \, \frac{1}{1 + e^{2x}} \ \, [\underline{\mathbf{E}}] \ \, \frac{1}{1 + e^{2x}} \ \, [\underline{\mathbf{E}}] \ \, \frac{e^{x^2}}{1 + e^{x^2}} \ \, \underline{\mathbf{E}}] \ \, \frac{1}{1 + e^{x^2}} \ \, \underline{\mathbf{E}}] \ \, \underline{\mathbf{$ $A + \infty$ $B - \infty$ C - 1 D = 1 E non esiste E = 0Quesito n. 6 II $\lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}$ è uguale a: A 3 B $\frac{1}{4}$ C -1 D $\frac{3}{4}$ E - ∞ F $\frac{1}{2}$ Quesito n. 7 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale $A = \frac{3}{2}$ B = 0 $C = \frac{1}{2}$ D = 1 $E = +\infty$ E = 1Quesito n. 8 Sia $A = \mathbf{R} - \{\sqrt{2}\}$. Si considerino le affermazioni: (a) √2 appartiene alla chiusura di A; (b) 0 è un punto di accumulazione per A; (c) $\sqrt{2}$ è un punto interno per A. Allora quelle vere sono: A solo (b) B solo (a) C nessuna D tutte E solo (a) e (b) F solo (a) e (c) Quesito n. 9 Quanto vale il limite $\lim_{x\to +\infty} x \ln\left(1+\frac{3}{x}\right)$? A 1 B 0 C e^3 D 3 E $+\infty$ F non esiste Quesito n. 10 II $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A 0 B $+\infty$ C $\sqrt{2}$ D non esiste E 2 F $\frac{1}{2}$ Quesito n. 11 $\lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2^n]{n!}+5n}$ è uguale a: Quesito n. 12 Si considerino le affermazioni (a) $\ln(1+x) = o(x)$ per $x \to 0$; (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono: A solo (b) B solo (a) e (c) C solo (a) D tutte E nessuna F solo (c) Quesito n. 13 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a $\boxed{ \textbf{A} \left(\ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{C} \left(\ln x \right)^{2 \ln x} } \quad \boxed{ \textbf{D} } \, 2x^2 \ln |x| \quad \boxed{ \textbf{E} } \, 2x \ln x \quad \boxed{ \textbf{F} } \, x^2 \ln^2 x$ **Quesito n. 14** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \quad \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \square } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(a_n) \in a_n =$ Quesito n. 15 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \boxdot } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \smile } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \smile } \ a_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(a_n) \in a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap a_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \cap$ Quesito n. 16 Il $\lim_{n\to+\infty} n\left(e^{\frac{3}{n}}-e^{\frac{2}{n}}\right)$ è uguale a: $A + \infty$ $B = \frac{1}{6}$ C_1 $D = \frac{1}{3}$ $E = \frac{2}{3}$ E_0 Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (b) $a_n = o(n^2) \text{ per } n \to +\infty;$ (c) $\lim_{n \to +\infty} a_n = +\infty.$ Allora quelle vere sono A solo (a) e (b) B solo (a) C nessuna D solo (a) e (c) E solo (c) F tutte Compito n.10 Cognome: Matr:....

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.11 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4) \text{ per } n \to +\infty;$ (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n\to+\infty} a_n = +\infty$. Allora quelle vere sono A solo (c) B solo (a) e (b) C solo (a) e (c) D nessuna E tutte F solo (a) Quesito n. 2 Il $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi}$ è uguale a: $A = \begin{bmatrix} 1 & B \\ 0 & C \\ e & D \end{bmatrix} e^{-e+\pi} = \begin{bmatrix} 1 & F \\ e^{-\pi} \end{bmatrix}$ **Quesito n. 3** Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni (a) $0 \stackrel{.}{e}$ un punto interno per A; (b) $0 \stackrel{.}{e}$ un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (a) C solo (b) D nessuna E solo (a) e (c) F tutte Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha $\boxed{ \boxed{\textbf{A}} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{B}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{C}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{D}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{F}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ c_n = o(a_n$ Quesito n. 5 Il $\lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{(1-\cos\frac{3}{n})}$ è uguale a: $\boxed{\mathbf{A}} \frac{1}{3} \quad \boxed{\mathbf{B}} \frac{1}{6} \quad \boxed{\mathbf{C}} + \infty \quad \boxed{\mathbf{D}} \quad \mathbf{0} \quad \boxed{\mathbf{E}} \quad \mathbf{1} \quad \boxed{\mathbf{F}} \quad \frac{2}{3}$ Quesito n. 6 Quanto vale il limite $\lim_{x\to 0+} x \ln\left(1+\frac{3}{x}\right)$? Quesito n. 7 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $\frac{\boxed{\textbf{A}} \; \frac{-x}{(x+1) \ln^2 \left(1+\frac{1}{x}\right)} \quad \boxed{\textbf{B}} \; -\frac{1}{x^2} \ln \left(1+\frac{1}{x}\right) \quad \boxed{\textbf{C}} \; -\frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{\textbf{D}} \; \frac{1}{x^2 \ln^2 \left(1+\frac{1}{x}\right)} \quad \boxed{\textbf{E}} \; \frac{1}{(x^2+x) \ln^2 \left(1+\frac{1}{x}\right)} \quad \boxed{\textbf{F}} \; 1 + \frac{1}{x} }$ Quesito n. 9 Calcolare $\lim_{x \to 0^+} \frac{(e^x-1) \; \left(1+\sin^2\frac{1}{x}\right)}{\ln \left(1+\sin^2x\right)}$ Quesito n. 10 Il $\lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}}$ vale $A\sqrt{2}$ B C non esiste D O E $\frac{1}{2}$ F $+\infty$ Quesito n. 11 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale Quesito n. 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ h \circ f$ è uguale a Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: $\boxed{ \boxed{\textbf{A}} } \ a_n = o(b_n) \ \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{E}} \ b_n = o(c_n) \ \ \textbf{e} \ a_n = o(c_n) \ \ \textbf{e} \ c_n = o(a_n) \ \ \textbf{e} \ a_n = o(b_n) \ \ \textbf{E} \ c_n = o(b_n) \ \ \textbf{e} \ b_n = o(a_n) \ \ \textbf{e} \ c_n = o(b_n) \ \ \textbf{e} \ a_n = o(a_n) \ \ \textbf{e} \ a_n = o(a_n$ Quesito n. 14 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera: (c) C può avere punti isolati. (a), (b) e (c) sono tutte vere (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (b) con false (c) è vera e (a) e (b) sono false (c) sono false (c) e (c) sono false (c) è vera e (a) e (b) sono false (c) è vera e (b) e (c) sono false (c) è vera e (b) e (c) sono false (c) è vera e (b) e (c) sono false (c) è vera e (b) e (c) sono false (c) è vera e (b) e (c) sono false (c) è vera e (b) e (c) sono false (c) è vera e (c false E 2 affermazioni sono vere ed una è falsa Quesito n. 15 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $A = \frac{2}{5}$ $B = \frac{2}{5}$ $C = \frac{1}{5}$ $D = \frac{1}{5}$ E = 0 $E = \infty$ Quesito n. 16 Si considerino le affermazioni: (a) $\ln(1+x) = o(x)$ per $x \to 0$; (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono: A solo (a) e (c) B solo (b) C solo (a) D nessuna E tutte F solo (c) $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ Quesito n. 17 è uguale a: $\boxed{A}_{+\infty}$ $\boxed{B}_{\frac{7}{3}}$ $\boxed{C}_{\frac{2}{3}}$ $\boxed{D}_{\frac{2}{5}}$ \boxed{E}_{0} $\boxed{F}_{\frac{7}{5}}$

 Compite n.11
 Cognome:
 Nome:
 Matr:

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.17

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 <t

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Presel Compito n.12 del test di preselezione per il I esonero	Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a:	
$\boxed{\mathbf{A}} \frac{7}{3} \boxed{\mathbf{B}} \frac{2}{5} \boxed{\mathbf{C}} + \infty \boxed{\mathbf{D}} \frac{7}{5} \boxed{\mathbf{E}} \frac{2}{3} \boxed{\mathbf{F}} 0$	
Quesito n. 2 Sia $A = \mathbf{R} - \left\{\sqrt{2}\right\}$. Si considerino le affermazioni:	
 (a) √2 appartiene alla chiusura di A; (b) 0 è un punto di accumulazione per A; 	
(c) $\sqrt{2}$ è un punto interno per A . Allora quelle vere sono:	
A solo (b) B solo (a) C nessuna D solo (a) e (c) E solo (a) e (b) F tutte	
Quesito n. 3 Sia C un sottoinsieme non vuoto di \mathbf{R} . Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto;	
(b) se C è chiuso allora ogni successione $(a_n) \subset C$ converge; (c) se C è chiuso allora anche il suo complementare è chiuso.	
Allora: $\begin{tabular}{lll} \hline A & (a), (b) & (c) & (c) & (b) & (c) & (b) & (c) & (b) & (c) & $	e (c) sono false \Box (c) è vera e (a) e (b) sono false \Box (a), (b) e (c) sono
Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n\sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si h	
	(a_n) e $a_n = o(b_n)$ (a_n) e $a_n = o(c_n)$ (a_n) e $a_n = o(b_n)$ e $b_n = o(c_n)$
(a) $\sup_{n\in\mathbb{N}}a_n=+\infty;$	
(b) $\lim_{n\to+\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente.	
Allora quelle vere sono: Al tutte B solo (a) C solo (a) e (b) D nessuna E solo (c) F solo (a) e (c)	
Quesito n. 6 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha:	
	$(a_n) \in c_n = o(b_n)$ $\stackrel{\textstyle \stackrel{\textstyle oldsymbol{\mathbb E}}{}}{} = c_n = o(b_n) \in b_n = o(a_n)$ $\stackrel{\textstyle \stackrel{\textstyle \Large oldsymbol{\mathbb E}}{}}{} = o(c_n) \in c_n = o(a_n)$
Quesito n. 7 Il $\lim_{n \to +\infty} \left(e + \frac{1}{n^2}\right)^n$ è uguale a:	
Quesito n. 8 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$?	
Quesito n. 10 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono	corrette:
(a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to \infty} a_n = \ell \text{ con } \ell \text{ finite a non puller}$	
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$	
(d) $a_n = o(b_n)$	
Quesito n. 11 $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a:	
$\boxed{\mathbb{A}} \stackrel{2}{\stackrel{2}{}{}{}{}{}{$	
Quesito n. 12 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale	
$\boxed{\mathbb{A}_{+\infty}} \boxed{\mathbb{B}_{\sqrt{2}}} \boxed{\mathbb{C}_{\frac{1}{2}}} \boxed{\mathbb{D}_{0}} \boxed{\mathbb{E}_{2}} \boxed{\mathbb{F}_{\text{non esiste}}}$	
Quesito n. 14 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}$	
A non esiste B 1 C 0 D 3 E $_{-1}$ F $_{+\infty}$ Quesito n. 15 Il $\lim_{n\to+\infty} n\left(e^{\frac{1}{2n}}-e^{\frac{1}{3n}}\right)$ è uguale a:	
A 1 B $\frac{1}{3}$ C $\frac{1}{6}$ D $+\infty$ E 0 F $\frac{2}{3}$ Quesito n. 16 Si considerino le affermazioni:	
(a) $e^{2x} - e^{x} \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^{x} = x + o(x) \text{ per } x \to +\infty;$	
(c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \operatorname{per} x \to +\infty$.	
Allora quelle vere sono: A nessuna B tutte C solo (b) D solo (a) E solo (a) e (c) F solo (c)	
Quesito n. 17 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allor	a, per tutti i valori di x per i quali è definita, $h\circ g\circ f$ è uguale a
$ \boxed{ \textcolor{red}{\mathbf{A}} \hspace{0.1cm} 2x \ln x \hspace{0.1cm} \boxed{ \textcolor{red}{\mathbf{B}} \hspace{0.1cm} \left(\ln x^2 \right)^{\ln x^2} \hspace{0.1cm} \boxed{ \textcolor{red}{\mathbf{C}} \hspace{0.1cm} 2x^2 \ln x \hspace{0.1cm} \boxed{ \textcolor{red}{\mathbf{D}} \hspace{0.1cm} x^2 \ln^2 x \hspace{0.1cm} \boxed{ \textcolor{red}{\mathbf{E}} \hspace{0.1cm} \left(\ln^2 x \right)^{\ln^2 x} \hspace{0.1cm} \boxed{ \textcolor{red}{\mathbf{F}} \hspace{0.1cm} \left(\ln x \right)^{2 \ln x} } $	
	latr:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.13 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (c) B solo (a) e (c) C solo (b) D nessuna E solo (a) e (b) F solo (a) Quesito n. 2 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a: Quesito n. 3 $A = \frac{2}{3} B = \frac{7}{5} C + \infty D_0 E = \frac{2}{5} E = \frac{7}{3}$ **Quesito n. 4** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n)$ Quesito n. 5 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (b) $a_n = o(n^2) \text{ per } n \to +\infty;$ (c) $\lim_{n \to +\infty} a_n = +\infty.$ Allora quelle vere sono: A solo (a) e (c) B tutte C nessuna D solo (c) E solo (a) F solo (a) e (b) Quesito n. 6 Il $\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale $A_0 B_1 C_{-\frac{1}{2}} D_{-\infty} E_{-\frac{1}{3}} F_{-1}$ Quesito n. 7 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x \text{ per } x \to 0$ Allora quelle vere sono: $oxed{A}$ solo (a) $oxed{B}$ tutte $oxed{C}$ solo (a) e (c) $oxed{D}$ solo (c) $oxed{E}$ solo (b) $oxed{F}$ nessuna Quesito n. 8 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). (a) se A è aperto allora la sua frontiera è vuota; (\mathbf{b}) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione. $oxed{A}$ solo (b) $oxed{B}$ solo (c) $oxed{C}$ solo (b) e (c) $oxed{D}$ solo (a) $oxed{E}$ tutte $oxed{F}$ nessuna Quesito n. 10 Il $\lim_{n\to+\infty} e^n \ln (1+e^{-n})$ è uguale a: $\boxed{A} \frac{1}{6} \boxed{B}_1 \boxed{C} \frac{2}{3} \boxed{D}_0 \boxed{E}_{+\infty} \boxed{F} \frac{1}{3}$ Quesito n. 11 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 12 Quanto vale il limite $\lim_{x\to 0^+} x \ln \left(1+\frac{3}{x}\right)$? A non esiste B 3 C 0 D e^3 E 1 F $+\infty$ Quesito n. 13 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale $A = \frac{1}{2}$ $B + \infty$ $C \sqrt{2}$ D = 2 E = 0 E = 0 non esiste Quesito n. 14 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{n+2}\right)^{n+e}$ è uguale a $A \sqrt{e^e} B e C e^e D \sqrt{e} E 1 F + \infty$ Quesito n. 15 Calcolare $\lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}$

A non esiste $B_{-\infty}$ C_0 D_1 E_{-1} $F_{+\infty}$

Quesito n. 16 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=4^n$, $b_n=n^42^n$ e $c_n=\frac{8^n}{n^4}$, si ha:

 $\boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} }$

n.1 n.2 n.3 A A A	n.4 n.5 n.6 A A A	n.7 n.8 n.9 A A A	n.10 n.11 n.12 A A A	n.13 n.14 n.15 A A A	n.16 n.17 A A
ВВВ	ВВВ	ВВВ	ВВВ	ВВВ	ВВ
C C C	C C C	C C C	C C C	C C C	CC
D D	D D	D D	D D	D D	$^{\mathrm{D}}$
E E	EE	E E	EE	E E	\mathbf{E}
FFF	FFF	F F F	F F F	F F F	FF

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.14 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right)$ vale $A = \frac{1}{2} B - \frac{1}{2} C_1 D + \infty E_0 F_{-1}$ **Quesito n. 2** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\boxed{ \boxed{ \textbf{A}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) } \quad \boxed{ \boxed{ \textbf{B}} \ b_n = o(c_n) } \quad \boxed{ \textbf{e} \ c_n = o(a_n) } \quad \boxed{ \boxed{ \textbf{C}} \ a_n = o(c_n) } \quad \boxed{ \boxed{ \textbf{C}} \ a_n = o(b_n) } \quad \boxed{ \boxed{ \textbf{D}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \boxed{ \textbf{E}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) } \quad \boxed{ \boxed{ \textbf{F}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \textbf{E} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n)$ Quesito n. 3 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale as $A = \frac{2}{5}$ $B = \frac{2}{5}$ $C = \frac{1}{5}$ $D_0 = E_{+\infty}$ $E = \frac{1}{5}$ Quesito n. 4 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a: Quesito n. 5 $\lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2n]{n!}+5n}$ è uguale a: $A_0 \xrightarrow{B} \frac{7}{5} \xrightarrow{C} + \infty \xrightarrow{D} \frac{7}{3} \xrightarrow{E} \frac{2}{5} \xrightarrow{F} \frac{2}{5}$ Quesito n. 6 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a **Quesito n. 7** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n)$ Quesito n. 8 Si considerino le affermazioni: (a) $\ln(1+x) = o(x)$ per $x \to 0$; (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono: A solo (a) B solo (c) C solo (a) e (c) D tutte E nessuna F solo (b) Quesito n. 9 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 10 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ A = -1 B = 0 $C = -\infty$ D = 1 $E = -\infty$ $E = -\infty$ $E = -\infty$ non esiste Quesito n. 11 Il $\lim_{n\to+\infty} n\left(e^{\frac{3}{n}}-e^{\frac{2}{n}}\right)$ è uguale a: $A_0 B_1 C_{\frac{1}{3}} D_{\frac{2}{3}} E_{\frac{1}{6}} F_{+\infty}$ **Quesito n. 12** Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni (a) 0 è un punto interno per A;(b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (c) B solo (a) C solo (b) D tutte E solo (a) e (b) F nessuna Quesito n. 13 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: A (a), (b) e (c) sono tutte vere (b) e (c) sono false (2) affermazioni sono vere ed una è falsa (D) (c) è vera e (a) e (b) sono false (E) (a), (b) e (c) sono tutte false F (b) è vera e (a) e (c) sono false Quesito n. 14 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale A 2 B $\frac{1}{2}$ C $+\infty$ D 0 E non esiste F $\sqrt{2}$ Quesito n. 15 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln \left(1+\frac{x}{3}\right)$? $A e^3 B + \infty C_0 D \text{ non esiste } E_3 F_1$ Quesito n. 16 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x) $\boxed{ \triangle } \ \frac{3}{x} \cos^2 \left(\ln x \right) \quad \boxed{ \triangle } \ \cos^3 \left(\ln x \right) \quad \boxed{ \triangle } \ 3 \sin^2 \left(\ln x \right) \cos \left(\ln x \right) \quad \boxed{ \triangle } \ \frac{3}{x} \sin^2 \left(\ln x \right) \cos \left(\ln x \right) \quad \boxed{ \triangle } \ \sin^3 \left(\frac{1}{x} \right) \quad \boxed{ \triangle } \ 3 \cos^2 \left(\frac{1}{x} \right)$ Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n) \text{ per } n \to +\infty$ Allora quelle vere sono: A tutte B nessuna C solo (a) e (c) D solo (a) e (b) E solo (a) F solo (c)

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.15 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                            Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
Quesito n. 2 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
A_1 \quad B \stackrel{1}{=} \quad C \stackrel{1}{=} \quad D_0 \quad E_{+\infty} \quad F \stackrel{2}{=} \quad C
Quesito n. 3 \lim_{n\to+\infty} \frac{7n^{2n}+2(n!)^2}{3(\sqrt{n})^{3n}+5n^{\ln n}} è uguale as
A = \frac{2}{5} B + \infty C = \frac{7}{5} D = \frac{7}{3} E_0 = \frac{2}{3}
Quesito n. 4 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ h \circ f è uguale a
Quesito n. 5 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale as
A 1 B \frac{1}{2} C 0 D +\infty E non esiste in \mathbb{R}^* F -\infty
Quesito n. 6 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A\sqrt{2} B_0 C\frac{1}{2} D_2 E_{+\infty} F_{\text{non esiste}}
Quesito n. 7 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
Quesito n. 8 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) sup a_n = +\infty;
(b) \lim_{n \to \infty} a_n = +\infty;
 (c) (a<sub>n</sub>) è una successione crescente.
 Allora quelle vere sono:
Quesito n. \overline{9} Date le successioni (a_n), \overline{(b_n)} e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si hax
 \boxed{ \triangle } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \ \ \boxed{ C } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ \boxed{ E } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \ \ \boxed{ E } \ c_n = o(b_n) \ \ e \ b_n = o(b_n) \ \ e 
 Quesito n. 10 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
oxed{A} solo (b) e (c) oxed{B} solo (c) oxed{C} solo (a), (b) e (c) oxed{D} solo (d) oxed{E} solo (c) e (d) oxed{F} nessuna
Quesito n. 11 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
A = \frac{1}{3} B = 1 C = 0 D = \infty E = 1 E = \frac{1}{2}
Quesito n. 12 Si considerino le affermazioni
(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;
(c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
Allora quelle vere sono:
A solo (a) B solo (c) C nessuna D tutte E solo (a) e (c) F solo (b)
 Quesito n. 13 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x).
Quesito n. 14 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni:
 (a) 2 è un punto di accumulazione per A;
(b) 5 appartiene alla chiusura di A;
 (c) 9 è un punto di accumulazione per A.
 Allora quelle vere sono:
A solo (a) e (c) B solo (a) e (b) C nessuna D tutte E solo (b) F solo (a)
Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[6]{n} e c_n = \ln n, si ha:
 \boxed{ \triangle } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \ \ \boxed{ E} \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ \boxed{ C} \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \ \ \boxed{ E} \ a_n = o(a_n) \ \ \boxed{ E} \ c_n = o(a_n) \ \ \boxed{ E
Quesito n. 16 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
A 1 B 0 C non esiste D -\infty E +\infty F -1
 Quesito n. 17 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni:
 (a) se C è chiuso e limitato allora è anche compatto;
(b) se C è chiuso allora ogni successione (a_n) \subset C converge;
 (c) se C è chiuso allora anche il suo complementare è chiuso.
 Allora:
🖺 2 affermazioni sono vere ed una è falsa 🖺 (b) è vera e (a) e (c) sono false 🖸 (a) è vera e (b) e (c) sono false 🖸 (a), (b) e (c) sono tutte vere 🖺 (a), (b) e (c) sono
tutte false F (c) è vera e (a) e (b) sono false
Compito n.15 Cognome: Nome: Matr: . . . .
                                                                                                                    n.13 n.14 n.15
A A A
B B B
C C C C
D D D
E E E E

    n.1
    n.2
    n.3
    n.4
    n.5
    n.6

    A
    A
    A
    A
    A
    A

    B
    B
    B
    B
    B
    B
    B

    C
    C
    C
    C
    C
    C

    D
    D
    D
    D
    D
    D

    E
    E
    E
    E
    E
    E

                                                                             n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
```

Compito n.16 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia C un sottoinsieme non vuoto di ${\bf R}.$ Si considerino le affermazioni (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in CAllora: $\boxed{\Delta}$ (c) è vera e (a) e (b) sono false \boxed{E} (a) è vera e (b) e (c) sono false \boxed{C} (a), (b) e (c) sono tutte vere \boxed{D} (a), (b) e (c) sono tutte false \boxed{E} 2 affermazioni sono vere ed una è falsa $\boxed{\mathbb{F}}$ (b) è vera e (a) e (c) sono false Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $b_n = 3^n$ e $c_n = 2^n$, si ha $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ C } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ D } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ E } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(a_n) \ e \$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \mathbb{E}} \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \mathbb{C}} \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \mathbb{D}} \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \mathbb{E}} \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \mathbb{E}} \ b_n = o(c_n) \in a_n = o(c_n)$ Quesito n. 4 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a Quesito n. 5 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: Quesito n. 6 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale A non esiste $\mathbb{B} + \infty$ $\mathbb{C} = 0$ $\mathbb{D} = 2$ $\mathbb{E} = \sqrt{2}$ $\mathbb{E} = \frac{1}{2}$ Quesito n. 7 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $A = \frac{1}{5}$ $B + \infty$ C_0 $D - \frac{1}{5}$ $E = \frac{2}{5}$ $F - \frac{2}{5}$ Quesito n. 8 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)(e^x-1)}{\ln(1+x^2)}$ f A 1 f B 0 $\bf C$ -1 $\bf D$ + ∞ $\bf E$ - ∞ $\bf F$ non esiste **Quesito n. 9** Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x). $\boxed{A} \sin^3\left(\frac{1}{x}\right)$ $\boxed{B} 3 \sin^2\left(\ln x\right) \cos\left(\ln x\right)$ $\boxed{C} \cos^3\left(\ln x\right)$ $\boxed{D} 3 \cos^2\left(\frac{1}{x}\right)$ $\boxed{E} \frac{3}{x} \cos^2\left(\ln x\right)$ $\boxed{E} \frac{3}{x} \sin^2\left(\ln x\right) \cos\left(\ln x\right)$ Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbb{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: Quesito n. 11 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (d) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (b) e (c) $oxed{D}$ solo (c) $oxed{E}$ solo (a), (b) e (c) $oxed{F}$ nessuna Quesito n. 12 Il $\lim_{n \to \infty} n\left(e^{\frac{2}{n}} - e^{\frac{2}{n}}\right)$ è uguale a: Quesito n. 13 Il $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi}$ è uguale a: $A e^{-e+\pi} B \frac{1}{e} C e D e^{-\pi} E 1 F 0$ Quesito n. 14 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$? $A + \infty$ B 0 C 3 $D e^3$ E non esiste E 1Quesito n. 15 $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2x} - \sqrt{x^3+1} \right)$ vale A = 0 $B + \infty$ $C - \frac{1}{2}$ $D = \frac{1}{2}$ E - 1 E = 1 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}$ Quesito n. 16 è uguale a $A_0 ext{ } B frac{2}{5} ext{ } C frac{7}{3} ext{ } D_{+\infty} ext{ } E frac{7}{5} ext{ } F frac{2}{3}$ Quesito n. 17 Si considerino le affermazioni (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0$. Allora quelle vere sono: A nessuna B solo (b) e (c) C solo (c) D solo (a) E solo (b) F solo (a) e (b) Matr:.... n.7 n.8 n.9
A A A
B B B B
C C C
D D D
E E E E | n.13 | n.14 | n.15 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F | F | n.16 n.17
A A B B
C C C
D D
E E F

Compito n.17 del test di preselezione per il I esonero

```
Quesito n. 1 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 \overline{A} solo (c) e (d) \overline{B} solo (a), (b) e (c) \overline{C} solo (b) e (c) \overline{D} nessuna \overline{E} solo (c) \overline{F} solo (d)
 Quesito n. 2 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) (a_n) è una successione crescente.
  Allora quelle vere sono
 A solo (c) B solo (a) C nessuna D solo (a) e (b) E tutte F solo (a) e (c)
 Quesito n. 3 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere
  (a) se A è aperto allora la sua frontiera è vuota;

 (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;

 (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
 A nessuna B tutte C solo (b) e (c) D solo (a) E solo (c) F solo (b)
 Quesito n. 4 Il \lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)} è uguale a:
 A + \infty B + C + D = 0 E = \frac{1}{2} F non esiste in R^*
 Quesito n. 5 Calcolare \lim_{x \to \infty} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{\ln x}
 A - \infty B = 0 C = 1 D = 0 non esiste E - 1 E + \infty
 Quesito n. 6 Il \lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
 A \sqrt{2} B_2 C_{+\infty} D_{\text{non esiste}} E_0 F_{\frac{1}{2}}
 Quesito n. 7 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x)
 \boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{D} } \ c_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(a
 Quesito n. 9 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
 A = \frac{1}{2} B = 1 C + \infty D = 1 E = \frac{1}{2} E = 0
 Quesito n. 10 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbf{N}\}. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A; (b) -2 è un punto di accumulazione per A; (c) 2^{-100} è un punto di accumulazione per A.
  Allora quelle vere sono:
 A solo (b) B solo (a) C solo (a) e (b) D tutte E nessuna F solo (a) e (c)
 Quesito n. 11 Il \lim_{n\to+\infty} e^n \ln (1+e^{-n}) è uguale a:
\boxed{ A}_{+\infty} \quad \boxed{ B}_{1} \quad \boxed{ C}_{\frac{1}{3}} \quad \boxed{ D}_{\frac{2}{3}} \quad \boxed{ E}_{\frac{1}{6}} \quad \boxed{ F}_{0}
 Quesito n. 12 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ h \circ f è uguale a
 \lim_{n \to +\infty} \frac{7\sqrt[n]{(2n)!} + 2(n^{\ln n})^2}{3n^{\ln n^2} + 5\ln((3n)!)}
 Quesito n. 13
                                                                                                     è uguale a:
\boxed{A}_{+\infty} \boxed{B}_{\frac{7}{5}} \boxed{C}_{\frac{2}{3}} \boxed{D}_{0} \boxed{E}_{\frac{2}{5}} \boxed{F}_{\frac{7}{3}}
 Quesito n. 14 Si considerino le affermazioni:
 (a) \ln(1+x) = o(x) per x \to 0;

(b) \ln(1-x) = -x + o(x) per x \to 0;
 (c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
 Allora quelle vere sono:
 A solo (a) e (c) B nessuna C solo (b) D solo (a) E tutte F solo (c)
 Quesito n. 15 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
 A_{+\infty} B_1 C_{2e} D_{e+1} E_{e^e} F_{e}
 Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n^{100}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si has
 Quesito n. 17 Quanto vale il limite \lim_{x\to +\infty} x^2 \ln\left(1+\frac{3}{x}\right)?
 A 3 B e^3 C non esiste D +\infty E 1 F 0
 | n.10 | n.11 | n.12 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F | F |
                                                                   | n. ( | n. 8 | n. 9 |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
| F | F | F |
                                                                                                                                       | n.13 | n.14 | n.15 | A | A | A | B | B | B | B | C | C | C | D | D | D | D | D | D |
                                  A A A A B B B C C C C D D D D
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.18 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia A un sottoinsieme aperto e non vuoto di ${\bf R}$. Si considerino le affermazion (a) A è sempre un intervallo; (b) A non ha mai punti isolati; (c) il complementare di A è sempre chiuso Allora: (a) è vera e (a) e (c) sono false (b) e vera e (a) e (b) sono false (c) è vera e (a) e (b) sono false (c) sono false (c) affermazioni sono vere ed una è falsa (c) e (c) sono tutte false F (a), (b) e (c) sono tutte vere Quesito n. 2 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a Quesito n. 3 Si considerino le affermazioni: (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: Quesito n. 4 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale a: $A = \frac{1}{2}$ B = 1 $C + \infty$ D = 0 $E - \infty$ E = 0 non esiste in R^* Quesito n. 5 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A 0 B non esiste $C + \infty$ D $\sqrt{2}$ E 2 F $\frac{1}{2}$ Quesito n. 6 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale $A - \frac{1}{2}$ B_1 $C + \infty$ $D \frac{1}{2}$ E - 1 F_0 Quesito n. 7 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a: Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n)$ Quesito n. 9 $\lim_{n\to+\infty} \frac{7n^n+2\cdot n!}{3e^{n\ln n}+5e^{\ln^2 n}}$ è uguale a: $\boxed{A} \frac{7}{3} \boxed{B}_0 \boxed{C} \frac{2}{3} \boxed{D} \frac{7}{5} \boxed{E}_{+\infty} \boxed{F} \frac{2}{5}$ Quesito n. 10 Quanto vale il limite $\lim_{x \to a} x \ln \left(1 + \frac{3}{x}\right)$? Quesito n. 11 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). Quesito n. 12 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: $\boxed{ \boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) } \quad \boxed{ \boxed{\textbf{B}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) } \quad \boxed{ \boxed{\textbf{C}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) } \quad \boxed{ \boxed{\textbf{D}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) } \quad \boxed{ \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \boxed{\textbf{F}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) }$ Quesito n. 13 Il $\lim_{n \to +\infty} \frac{n^2}{3} \left(1 - \cos \frac{2}{n}\right)$ è uguale a: $A_{+\infty}$ B_1 C_0 $D_{\frac{1}{6}}$ $E_{\frac{2}{3}}$ $F_{\frac{1}{3}}$ Quesito n. 14 Calcolare $\lim_{x\to 0+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}$ (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 16 Sia $A = [-3, 3] \cap \mathbb{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A;

(b) 0 è un punto di accumulazione per A;

(c) √3 è un punto interno per A.

Allora quelle vere sono:

A solo (a) B tutte C solo (a) e (b) D solo (a) e (c) E solo (b) F nessuna

Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:

(a) $a_n = o(n^4) \text{ per } n \to +\infty;$

(b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$.

Allora quelle vere sono:

A tutte B solo (a) C solo (c) D solo (a) e (b) E nessuna F solo (a) e (c)

| n.10 | n.11 | n.12 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F | F |
 n.7
 n.8
 n.9

 A
 A
 A

 B
 B
 B

 C
 C
 C

 D
 D
 D

 E
 E
 E

 F
 F
 F

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.19 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$ Allora quelle vere sono Quesito n. 2 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ valee A non esiste $\mathbb{B}\sqrt{2}$ $\mathbb{C}+\infty$ \mathbb{D} 2 $\mathbb{E}\frac{1}{2}$ \mathbb{F}_0 Quesito n. 3 Sia $f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}$. Calcolare f'(x) $\boxed{\mathbf{A} - \frac{1}{x^2} - \frac{1}{x^3}} \quad \boxed{\mathbf{B}} \ 1 + \frac{1}{x} \quad \boxed{\mathbf{C}} \ \frac{1}{(x^2 + x) \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{\mathbf{D}} \ \frac{1}{x^2 \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{\mathbf{E}} - \frac{1}{x^2} \ln \left(1 + \frac{1}{x}\right) \quad \boxed{\mathbf{F}} \ \frac{-x}{(x+1) \ln^2 \left(1 + \frac{1}{x}\right)}$ Quesito n. 4 II $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a: $\boxed{A} \frac{3}{2} \quad \boxed{B} \text{ non esiste in } \mathbb{R}^* \quad \boxed{C} \quad \boxed{0} \quad \boxed{D} \frac{1}{2} \quad \boxed{E} \quad \boxed{2} \quad \boxed{F} + \infty$ Quesito n. 5 Quanto vale il limite $\lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)$? Quesito n. 6 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (a) e (c) B solo (a) C solo (b) D nessuna E solo (c) F tutte Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{B} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{D} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n$ Quesito n. 8 $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a: Quesito n. 10 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2x}-\sqrt{x^3+x^2}\right)$ vale $f A \ 0 \quad f B - rac{1}{2} \quad f C - 1 \quad f D - \infty \quad f E - rac{1}{3} \quad f F \ 1$ Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: $\boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{C} } \ a_n = o(b_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ b_n =$ Quesito n. 12 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{\mathbb{A}}$ solo (d) $oxed{\mathbb{B}}$ solo (c) $oxed{\mathbb{C}}$ nessuna $oxed{\mathbb{D}}$ solo (a), (b) e (c) $oxed{\mathbb{E}}$ solo (b) e (c) $oxed{\mathbb{F}}$ solo (c) e (d) Quesito n. 14 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione $(a_n) \subset C$ converge; (c) se C è chiuso allora anche il suo complementare è chiuso A (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte false (c) è vera e (a) e (b) e (c) sono false (c) è vera e (a) e (b) sono false F (a), (b) e (c) sono tutte vere Quesito n. 15 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni:

(a) 1 è un punto di accumulazione per A;

(b) 1 è un punto di frontiera per A;

(c) 1 è un punto interno per A. Allora quelle vere sono:

A solo (c) B solo (a) e (b) C solo (a) D nessuna E solo (b) F solo (a) e (c)

Quesito n. 16 Siano $f(x) = \ln(x), g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a

 $\boxed{A} \frac{1}{6} \boxed{B} \frac{1}{3} \boxed{C} \frac{2}{3} \boxed{D}_0 \boxed{E}_{+\infty} \boxed{F}_1$

```
n.13 n.14 n.15
A A A A
B B B B
C C C C
D D D
                                                                        n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
F F F
                                    n.4 n.5 n.6
A A A
B B B
C C C
D D D
E E E E
n.1 n.2 n.3
A A A B B B B
C C C C
D D D D
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.20 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Calcolare $\lim_{x \to 0^+} \frac{\left(1 + \sin^2 \frac{1}{x}\right) (e^x - 1)}{\ln (1 + e^2)}$ A - 1 $B - \infty$ C 1 D 0 E non esiste Quesito n. 2 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (c) $oxed{B}$ solo (b) e (c) $oxed{C}$ solo (c) e (d) $oxed{D}$ solo (a), (b) e (c) $oxed{E}$ solo (d) $oxed{F}$ nessuna Quesito n. 3 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbb{N}} a_n = +\infty$; (b) $\lim_{n \to \infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono A solo (a) e (c) B nessuna C tutte D solo (a) E solo (a) e (b) F solo (c) $\lim_{n \to +\infty} \frac{7n^{2n} + 2\left(n!\right)^2}{3\left(\sqrt{n}\right)^{3n} + 5n^{\ln n}} \quad \text{è uguale a:}$ $A = \frac{2}{3}$ B_0 $C = \frac{7}{5}$ $D = \frac{7}{3}$ $E = \frac{2}{5}$ $F = +\infty$ **Quesito n. 5** Sia $A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}$. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A; (b) -2 è un punto di accumulazione per A; (c) 2^{-100} è un punto di accumulazione per A. Allora quelle vere sono: A nessuna B solo (b) C solo (a) e (b) D solo (a) e (c) E tutte F solo (a) Quesito n. 6 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x). Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $b_n = 3^n$ e $c_n = 2^n$, si ha $\boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_$ Quesito n. 8 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $\boxed{\mathbf{A} \ \frac{2}{3}} \quad \boxed{\mathbf{B}} \ 0 \quad \boxed{\mathbf{C}} \ \frac{1}{6} \quad \boxed{\mathbf{D}} \ 1 \quad \boxed{\mathbf{E}} \ \frac{1}{3} \quad \boxed{\mathbf{F}} + \infty$ Quesito n. 9 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a $\boxed{\mathbf{A}} \ 0 \quad \boxed{\mathbf{B}} + \infty \quad \boxed{\mathbf{C}} \ \text{non esiste in } \mathbf{R}^* \quad \boxed{\mathbf{D}} \ 2 \quad \boxed{\mathbf{E}} \ \frac{1}{2} \quad \boxed{\mathbf{F}} \ 1$ Quesito n. 10 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ h \circ f$ è uguale a $\underline{\mathbf{A}} \; (\ln x)^{2 \ln x} \quad \underline{\mathbf{B}} \; \left(\ln x^2\right)^{\ln x^2} \quad \underline{\mathbf{C}} \; 2x \ln x \quad \underline{\mathbf{D}} \; \left(\ln^2 x\right)^{\ln^2 x} \quad \underline{\mathbf{E}} \; x^2 \ln^2 x \quad \underline{\mathbf{F}} \; 2x^2 \ln |x|$ Quesito n. 11 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+1} \right)$ vale Quesito n. 12 Si considerino le affermazioni (a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$ (c) $e^x - 1 = x + o(x)$ per $x \to +\infty$ Allora quelle vere sono A solo (c) B solo (a) e (c) C nessuna D solo (b) E solo (a) F solo (b) e (c) Quesito n. 13 Il $\lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}}$ vale A non esiste $\mathbb{B} \frac{1}{2}$ $\mathbb{C} 2$ $\mathbb{D} \sqrt{2}$ $\mathbb{E} 0$ $\mathbb{F} + \infty$ Quesito n. 14 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(b_n) \ \underline{\mathbf{e}} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \quad \underline{\mathbf{D}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \quad \underline{\mathbf{F}} \ a_n = o(b_n) \quad \underline{\mathbf{F}} \ a_n = o(b_n) \quad \underline{\mathbf{E}} \ a_n = o(a_n) \quad \underline{\mathbf{E}} \ a_n = o(a$ Quesito n. 15 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni: (a) in ogni caso C è compatto; (c) in ogni caso C contiene tutti i suoi punti di accumulazione; (c) in ogni caso C non ha punti interni. Allora: (a) è vera e (b) e (c) sono false (b) e (c) sono false (c) sono tutte vere (c) 2 affermazioni sono vere ed una è falsa (d) (e) è vera e (a) e (c) sono false (e) (a), (b) e (c) sono tutte false F(c) è vera e (a) e (b) sono false Quesito n. 16 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$? $A_{+\infty}$ B_3 C_1 D_0 E_{e^3} $F_{non esiste}$ Quesito n. 17 Il $\lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en}$ è uguale a | No. 10 | N | n.13 | n.14 | n.15 |
A	A	A
B	B	B
C	C	C
D	D	D
E	E	E
A A A
B B B B
C C C C
D D D D
E E E E

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.21 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ **Quesito n. 1** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: $\boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{C}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ b$ Quesito n. 2 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a: $\boxed{A}_{+\infty}$ \boxed{B}_0 $\boxed{C}_{\frac{2}{3}}$ $\boxed{D}_{\frac{1}{6}}$ \boxed{E}_1 $\boxed{F}_{\frac{1}{3}}$ $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: $A \frac{7}{\epsilon} B \frac{2}{\epsilon} C_0 D_{+\infty} E \frac{7}{2} F \frac{2}{3}$ Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=\frac{\sqrt[4]{n}}{\ln n}, b_n=\sqrt[5]{n}$ e $c_n=\ln n$, si ha: $\boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(a_n) \quad \boxed{ \underline{$ Quesito n. 5 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$ $A - \infty$ B 0 C 1 D - 1 E non esiste $F + \infty$ Quesito n. 6 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a Quesito n. 7 Il $\lim_{n\to +\infty} \left(1+\frac{\pi}{n^2}\right)^{en}$ è uguale a: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 9 Si considerino le affermazioni: (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ **(b)** $1 - \cos x = x + o(x) \text{ per } x \to 0$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A solo (b) B solo (c) C nessuna D solo (a) E solo (b) e (c) F solo (a) e (b) Quesito n. 10 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni: (a) A è sempre un intervallo; (b) A non ha mai punti isolati; (c) il complementare di A è sempre chiuso. Allora: (a), (b) e (c) sono tutte false (b) e (c) sono false (c) (b) è vera e (a) e (c) sono false (d), (b) e (c) sono tutte vere (e) 2 affermazioni sono vere ed una è falsa F (c) è vera e (a) e (b) sono false Quesito n. 11 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale $A_1 B_0 C_{\frac{1}{2}} D_{+\infty} E_{-1} F_{-\frac{1}{2}}$ Quesito n. 12 Il $\lim_{x\to 0} \frac{\sqrt{1+x^2-\cos x}}{\ln(1+2x^2)}$ è uguale a: Quesito n. 13 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbb{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) B solo (c) C solo (a) e (c) D tutte E solo (a) e (b) F nessuna Quesito n. 14 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A 2 B non esiste $\mathbb{C}\sqrt{2}$ $\mathbb{D}\frac{1}{2}$ \mathbb{E} 0 \mathbb{F} $+\infty$ Quesito n. 15 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare f'(x). $\underbrace{ \begin{bmatrix} \underline{\mathbf{A}} & 1 & \\ x + x \ln^2 \frac{1}{x} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{B}} & 1 \\ x^2 - x^2 \ln^2 x \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{C}} & 1 \\ 1 + \ln^2 \frac{1}{x} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{D}} - \frac{1}{x + x \ln^2 x} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{E}} - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{F}} & \frac{1}{1 - \ln^2 x} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{F}} & \frac{1}{x} \end{bmatrix} \underbrace{ \begin{bmatrix} \underline{\mathbf{F}} &$ Quesito n. 16 Quanto vale il limite $\lim_{x\to +\infty} x \ln \left(1+\frac{3}{x}\right)$? A 0 B non esiste C 3 D $+\infty$ E 1 F e^3 Quesito n. 17 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (c) B solo (a) C nessuna D solo (a) e (b) E solo (b) F solo (a) e (c) A A A B B B C C C C D D D D E E E E A A A B B B C C C C C D D D D E E E E A A A B B B C C C C D D D D E E E E A A B B C C C D D D E E

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.22 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                              Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
A = \frac{1}{2} \quad B + \infty \quad C \quad D = \frac{1}{2} \quad E \quad D = 1
 Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
 \boxed{ \textbf{A} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o
Quesito n. 3 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
\boxed{A} + \infty \quad \boxed{B} \quad \boxed{C} \quad \frac{3}{2} \quad \boxed{D} \quad \frac{1}{2} \quad \boxed{E} \text{ non esiste in } \mathbf{R}^* \quad \boxed{F} \quad 2
                                                                                       e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
Quesito n. 5 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
\boxed{\textbf{A}} 3 \sin^2(\ln x) \cos(\ln x) \qquad \boxed{\textbf{B}} \cos^3(\ln x) \qquad \boxed{\textbf{C}} \frac{3}{x} \sin^2(\ln x) \cos(\ln x) \qquad \boxed{\textbf{D}} \sin^3\left(\frac{1}{x}\right) \qquad \boxed{\textbf{E}} 3 \cos^2\left(\frac{1}{x}\right) \qquad \boxed{\textbf{E}} \frac{3}{x} \cos^2(\ln x)
Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
A 0 B non esiste C - 1 D + \infty E - \infty F = 1
Quesito n. 7 Il \lim_{n \to +\infty} \left(1 + \frac{e}{n+2}\right)^n è uguale a
A \quad B \quad \sqrt{e} \quad C \quad e \quad D + \infty \quad E \quad e^2 \quad F \quad e^e
Quesito n. 8 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
Quesito n. 9 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
A solo (a) e (c) B nessuna C tutte D solo (c) E solo (a) F solo (a) e (b)
Quesito n. 10 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
 \boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{B} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{D} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) 
Quesito n. 11 \lim_{n \to +\infty} \frac{7 \ln(n+e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n}è uguale a
Quesito n. 12 Si considerino le affermazioni:
(a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;
(c) e^x - 1 = o(x) per x \to 0,
Allora quelle vere sono:
A nessuna B solo (b) C solo (b) e (c) D solo (c) E solo (a) e (c) F solo (a)
Quesito n. 13 Il \lim_{x\to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A + \infty B = \frac{1}{2} C non esiste D \sqrt{2} E 2 F 0
Quesito n. 14 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 \boxed{ \textbf{A} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ 2x \ln x \quad \boxed{ \textbf{C} } \ x^2 \ln^2 x \quad \boxed{ \textbf{D} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textbf{E} } \left( \ln^2 x \right)^{\ln^2 x} \quad \boxed{ \textbf{F} } \ 2x^2 \ln |x| 
Quesito n. 15 Sia A=(-\infty,0)\cup\left\{2^{-n}\mid n\in\mathbb{N}\right\}. Si considerino le affermazioni:
  (a) 0 è un punto di accumulazione per A;
 (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
 Allora quelle vere sono:
A solo (a) e (c) B tutte C solo (a) e (b) D solo (b) E nessuna F solo (a)
Quesito n. 16 Sia C un sottoinsieme non vuoto di \mathbf R. Si considerino le affermazioni:
 (a) se C è chiuso allora è anche limitato;
(b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
  (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C.
  Allora:
(a), (b) e (c) sono tutte false (b) e (c) sono false (c) cono fals
una è falsa F (a), (b) e (c) sono tutte vere
Quesito n. 17 Il \lim_{n \to +\infty} n\left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a:
\boxed{\mathbf{A}}_{+\infty} \boxed{\mathbf{B}}_{3} \boxed{\mathbf{C}}_{3} \boxed{\mathbf{D}}_{0} \boxed{\mathbf{E}}_{1} \boxed{\mathbf{F}}_{6}
Compito n.22 Cognome: . .
                                                                                                                                                                                                                                        | n.4 | n.5 | n.6 | |
| A | A | A | |
| B | B | B | |
| C | C | C | |
| D | D | D | |
| E | E | E | |
| F | F | F |
                                                                                     n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E
F F F
                                                                                                                                 | n.13 | n.14 | n.15 | n.16 | n.17 |
| A | A | A | A | A |
| B | B | B | B | B |
| C | C | C | C |
| D | D | D | D | D |
| E | E | E | E |
| F | F | F | F | F |
```

```
Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Compito n.23 del test di preselezione per il I esonero
 Quesito n. 1 Calcolare \lim_{x \to 0^{+}} \frac{\ln(1+\sin^{2}x)\sin\frac{1}{x}}{\ln(1+\sin^{2}x)\sin\frac{1}{x}}
 A - \infty B + \infty C = 0 D - 1 E = non esiste E
 Quesito n. 2 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
 A non esiste \mathbb{B}\sqrt{2} \mathbb{C}_0 \mathbb{D}_{+\infty} \mathbb{E}\frac{1}{2} \mathbb{F}_2
  \boxed{ \textbf{A} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{C} } \ 2x \ln x \quad \boxed{ \textbf{D} } \ x^2 \ln^2 x \quad \boxed{ \textbf{E} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textbf{F} } \ 2x^2 \ln |x| 
 Quesito n. 4 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)?
 A + \infty B = 3 C non esiste D = 0 E = e^3 E = 1
 Quesito n. 5 Si considerino le affermazioni:
 (a) e^x - \cos x = o(x) \text{ per } x \to 0;
(b) 1 - \cos x = x + o(x) \text{ per } x \to 0;
  (c) e^x - \cos x \approx x \text{ per } x \to 0.
 Allora quelle vere sono:
 A solo (b) e (c) B solo (a) C solo (b) D nessuna E solo (c) F solo (a) e (b)
 Quesito n. 6 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 oxed{A} solo (b) e (c) oxed{B} solo (c) e (d) oxed{C} solo (a), (b) e (c) oxed{D} solo (d) oxed{E} solo (c) oxed{F} nessuna
 Quesito n. 7 Il \lim_{n\to+\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right) è uguale a:
Quesito n. 8 Sia f(x) = \frac{1}{\ln{(1+\frac{1}{x})}}. Calcolare f'(x)
 \boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{D} } \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{F} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) 
 Quesito n. 10 II \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
 Quesito n. 11 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni:
  (a) A è sempre un intervallo;
  (b) A non ha mai punti isolati;
 (c) il complementare di A è sempre chiuso.
Allora:
 🖺 2 affermazioni sono vere ed una è falsa 🖺 (a), (b) e (c) sono tutte vere 🖸 (a), (b) e (c) sono tutte false 🗓 (c) è vera e (a) e (b) sono false 🖺 (a) è vera e (b) e (c)
 sono false E (b) è vera e (a) e (c) sono false
 Quesito n. 12 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
 Quesito n. 13 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni:
  (a) 1 è un punto di accumulazione per A;

(b) 1 è un punto di frontiera per A;
(c) 1 è un punto interno per A.

  Allora quelle vere sono:
 A nessuna B solo (a) e (c) C solo (b) D solo (a) e (b) E solo (c) F solo (a)
                                 \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}è uguale a:
 A = \frac{2}{5} B + \infty C_0 D = \frac{7}{3} E = \frac{2}{3} E = \frac{7}{5}
 Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si has
  \boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf
 Quesito n. 16 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en}
 Quesito n. 17 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;
 (b) \lim_{n \to +\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
 A tutte B solo (a) C solo (a) e (b) D solo (c) E nessuna F solo (a) e (c)
 Nome: Matr:

    n.13
    n.14
    n.15

    A
    A
    A

    B
    B
    B

    C
    C
    C

    D
    D
    D

    E
    E
    E

    F
    F
    F
```

```
Compito n.24 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                 Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
  \boxed{ \triangle } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ C } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ E } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ b_n = o(a_n) \quad
 Quesito n. 2 Il \lim_{x\to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}} vale
 A 2 B \frac{1}{2} C +\infty D \sqrt{2} E 0 F non esiste
 Quesito n. 3 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
   (c) (a<sub>n</sub>) è una successione crescente.
  Allora quelle vere sono:
 oxed{A} solo (c) oxed{B} solo (a) oxed{C} solo (a) e (b) oxed{D} solo (a) e (c) oxed{E} tutte oxed{F} nessuna
  Quesito n. 4 Sia C un sottoinsieme non vuoto di {\bf R}. Si considerino le affermazioni

 (a) se C è chiuso allora è anche limitato;

    (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;

  (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C
 A 2 affermazioni sono vere ed una è falsa (a) è vera e (b) e (c) sono false (C) (a), (b) e (c) sono tutte false (D) (a), (b) e (c) sono tutte vere (E) (c) è vera e (a) e (b)
 sono false F (b) è vera e (a) e (c) sono false
 Quesito n. 5 Il \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)} è uguale a:
 A = \frac{1}{4} B = \frac{1}{2} C = \infty D = 1 E = \frac{3}{4} E = 3
 Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
 A + \infty B non esiste C - 1 D 3 E 0 F 1
 Quesito n. 7 Sia A=(-\infty,0)\cup\left\{2^{-n}\mid n\in\mathbf{N}\right\}. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A;
  (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
  Allora quelle vere sono:
(a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
     (d) a_n = o(b_n)
 oxed{A} solo (c) oxed{B} solo (d) oxed{C} solo (b) e (c) oxed{D} nessuna oxed{E} solo (a), (b) e (c) oxed{F} solo (c) e (d)
 Quesito n. 9 \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5 n^{\ln n}} \quad \text{è uguale a}
\boxed{A} \frac{7}{3} \boxed{B} \frac{7}{5} \boxed{C} \frac{2}{3} \boxed{D} + \infty \boxed{E}_0 \boxed{F} \frac{2}{5}
 Quesito n. 10 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
 A + \infty B e + 1 C e D 1 E 2e F e^e
 Quesito n. 11 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
\overline{\textbf{Quesito n. 13}} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{è definita solo per} \ x > 0. \ \ \text{Allora, per tutti i valori di} \ x \ \text{per i quali è definita,} \ h \circ g \circ f \ \text{è uguale and } x \in \mathbb{R}^n
 Quesito n. 14 II \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
 A_0 B_1 C_{\frac{2}{3}} D_{\frac{1}{3}} E_{+\infty} F_{\frac{1}{6}}
 Quesito n. 15 Si considerino le affermazioni:
   (a) \sin x - x = o(x) \text{ per } x \to 0;
   (b) \sin x \approx x \text{ per } x \to 0;
  (c) \frac{\sin x}{\cos x} \to 0 \text{ per } x \to +\infty
  Allora quelle vere sono:
 A solo (c) B solo (b) C solo (a) D nessuna E tutte F solo (a) e (c)
 Quesito n. 16 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1+\frac{3}{x^2}\right)?
 A non esiste B 3 C 1 D 0 E e^3 F +\infty
 Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
  \boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{B}}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{C}}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{D}}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ b_n = o(a_n) } \quad \boxed{ 
 n.13 n.14 n.15
A A A
B B B
C C C C
D D D
                                                                                                                                               | n.10 | n.11 | n.12 | A | A | A | A | B | B | B | C | C | C | D | D | D | D |
                                                                                               n.7 n.8 n.9
A A A
B B B B
C C C
D D D
                                                 n.4 n.5 n.6
A A A
B B B B
C C C
D D
```

```
Compito n.25 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                            Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ \blacksquare } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \qquad \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) 
                                        \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} \quad \text{è uguale a:}
Quesito n. 2
A = \frac{2}{5} B = \frac{7}{5} C = \frac{2}{3} D + \infty E_0 E = \frac{7}{3}
Quesito n. 3 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni
(a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;
(c) (a_n) è una successione crescente Allora quelle vere sono:
oxed{\mathbb{A}} solo (c) oxed{\mathbb{B}} nessuna oxed{\mathbb{C}} solo (a) e (c) oxed{\mathbb{D}} tutte oxed{\mathbb{E}} solo (a) oxed{\mathbb{F}} solo (a) e (b) oxed{\mathbf{Quesito}} n. 4 Date a_n = \frac{1}{n + (-1)^n} e b_n = \frac{1}{n + \sin n}. Dire quali delle seguenti affermazioni sono corrette:
   (b) \lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
\overline{A} solo (c) e (d) \overline{B} solo (a), (b) e (c) \overline{C} nessuna \overline{D} solo (b) e (c) \overline{E} solo (c)
 Quesito n. 5 Si considerino le affermazioni:
 (a) \tan x - \sin x = o(x) per x \to 0;
 (b) \sin x = o(x) \text{ per } x \to 0
 (c) \sin x \approx \tan x \text{ per } x \to 0
 Allora quelle vere sono:
A solo (a) B solo (c) C solo (b) D solo (a) e (c) E tutte F nessuna
Quesito n. 6 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+x} \right) vale
A_0 B_{-\frac{1}{2}} C_{\frac{1}{2}} D_{-1} E_{+\infty} F_1
Quesito n. 7 II \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
A = \frac{8}{2} B_4 C_8 D_2 E_{\frac{2}{2}} F_{\frac{4}{2}}
Quesito n. 8 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni:

 (a) √2 appartiene alla chiusura di A;

 (b) 0 è un punto di accumulazione per A;
 (c) √2 è un punto interno per A.
 Allora quelle vere sono:
A solo (a) e (b) B solo (a) e (c) C solo (a) D tutte E nessuna F solo (b)
Quesito n. 9 Quanto vale il limite \lim_{x \to +\infty} \overline{x \ln \left(1 + \frac{3}{x}\right)}?
A + \infty B non esiste C e^3 D 3 E 1 F 0
Quesito n. 10 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
 \boxed{ \triangle } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \boxdot } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \smile } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \smile } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \smile } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \quad 
Quesito n. 12 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
\boxed{A}_1 \boxed{B}_{\frac{1}{3}} \boxed{C}_0 \boxed{D}_{\frac{1}{6}} \boxed{E}_{+\infty} \boxed{F}_{\frac{2}{3}}
Quesito n. 13 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a
A 1 B e^2 C e^e D \sqrt{e} E e F +\infty
Quesito n. 14 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni
 ({\bf a})in ogni caso C è compatto; ({\bf b})in ogni caso C contiene tutti i suoi punti di accumulazione:
 (c) in ogni caso C non ha punti interni.
A (a), (b) e (c) sono tutte false (b) e (c) sono tutte false (a), (b) e (c) sono tutte vere (a) e (c) e (c) sono false (b) e (c) sono false (c) a ferrmazioni sono vere ed una è falsa (c) e vera e (a) e (c)
sono false F (c) è vera e (a) e (b) sono false
Quesito n. 15 Il \lim_{x \to +\infty} \frac{2x \cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}} vale
A 2 B \frac{1}{2} C +\infty D \sqrt{2} E 0 F non esiste
Quesito n. 16 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{e^x-1}
A + \infty B \cdot 1 C \cdot non \cdot esiste  <math>D - \infty E \cdot 0 F - 1
Quesito n. 17 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E E
                                    | n.10 | n.11 | n.12 | A | A | A | B | B | B | B | C | C | C | D | D | D | E | E | E | E |
                                                                                                                                                                                      B B C C C D D D E E E
 A A A B B B C C C C D D D D E E E E
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
  Compito n.26 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
    Quesito n. 1 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
  A = \frac{1}{2} B \frac{1}{2} C_1 D_0 E_{-1} F_{+\infty}
  Quesito n. 2 Il \lim_{n \to +\infty} n \left( e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right) è uguale as
  A = \frac{1}{6} = \frac{2}{3} = C_1 = \frac{1}{3} = C_1 = C_1 = C_2 = 
    Quesito n. 3 Si considerino le affermazioni:
  (a) \sin x - x = o(x) per x \to 0;

(b) \sin x \approx x per x \to 0;
  (c) \frac{\sin x}{x} \to 0 per x \to +\infty
Allora quelle vere sono:
  A solo (c) B solo (b) C nessuna D solo (a) e (c) E tutte F solo (a)
  Quesito n. 4 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette:
        (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
         (c) a_n = O(b_n)
        (d) a_n = o(b_n)
  oxed{A} solo (c) oxed{B} solo (b) e (c) oxed{C} solo (c) e (d) oxed{D} solo (d) oxed{E} solo (a), (b) e (c) oxed{F} nessuna
            \textbf{Quesito n. 5} \  \, \text{Siano} \, f(x) = \ln(x), \, g(x) = x^2 \, \, \text{e} \, h(x) = x^x, \, \text{dove} \, h(x) \, \, \text{è definita solo per} \, x > 0. \, \, \text{Allora, per tutti i valori di } x \, \text{per i quali è definita, } h \circ f \circ g \, \, \text{è uguale a longer} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \, \text{elso only to the definital per index} \, h(x) \, \,
 Quesito n. 6 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln \left(1 + \frac{x}{2}\right)?
  \boxed{ \triangle } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ C } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ D } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ E } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ a_n = o(c_n) \quad \boxed{ E } \ a_n = o(a_n) \quad \boxed{ E
  Quesito n. 9 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
 A non esiste B + \infty C \frac{1}{2} D \sqrt{2} E 0 F 2
  Quesito n. 10 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
   \boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{C}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{D}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} 
  Quesito n. 11 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
  \boxed{A} \stackrel{3}{\stackrel{?}{=}} \boxed{B} \stackrel{?}{0} \boxed{C} + \infty \boxed{D} \stackrel{?}{2} \boxed{E} \stackrel{1}{\stackrel{?}{=}} \boxed{F} \text{ non esiste in } \mathbf{R}^*
                                                                                      \lim_{n \to +\infty} \frac{7 \ln(n + e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n} \quad \text{è uguale as}
    Quesito n. 12
  A = \frac{2}{2} B = \frac{7}{5} C + \infty D_0 E = \frac{7}{2} E = \frac{2}{5}
  Quesito n. 13 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
    (a) a_n = o(n^4) per n \to +\infty;
  (b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
  Allora quelle vere sono:
  A nessuna B tutte C solo (c) D solo (a) e (b) E solo (a) e (c) F solo (a)
  Quesito n. 14 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni

 (a) A è sempre un intervallo;

  (b) A non ha mai punti isolati;(c) il complementare di A è sempre chiuso.
 (a), (b) e (c) sono tutte vere (b) e (c) sono tutte vere (c) sono false (d) e (e) sono false (e) e (e) sono false (e) e (f) sono false (f) e (f) e (f) sono false (h) e (f) sono 
  Quesito n. 15 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni:
    (a) 1 è un punto di accumulazione per A;
     (b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per A. Allora quelle vere sono:
  A solo (a) e (b) B solo (a) C solo (a) e (c) D solo (b) E nessuna F solo (c)
  Quesito n. 16 Calcolare \lim_{\tau \to 0^{+}} \frac{\left(1 + \sin^2 \frac{1}{x}\right) \ln(1+x)}{\tau^2}
  A 0 B 1 C - 1 D - \infty E \text{ non esiste } F + \infty
```

Quesito n. 17 Il $\lim_{n\to+\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a: $\boxed{A} \ 1 \quad \boxed{B} \ e^{\pi} \quad \boxed{C} \ e \quad \boxed{D} \ e^{\frac{1}{e}} \quad \boxed{E} \ e^{\frac{1}{e}+\pi} \quad \boxed{F} + \infty$ Quesito n. 4 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a **Quesito n. 5** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n)$ Quesito n. 6 II $\lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{\left(1 - \cos \frac{3}{n}\right)}$ è uguale a: $A_{+\infty}$ $B_{\frac{1}{3}}$ C_0 $D_{\frac{2}{3}}$ E_1 $F_{\frac{1}{6}}$ Quesito n. 7 Il $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a: $\boxed{A}_2 \boxed{B}_8 \boxed{C}_{\frac{2}{3}} \boxed{D}_{\frac{8}{3}} \boxed{E}_{\frac{4}{3}} \boxed{F}_4$ Quesito n. 8 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ $(\mathbf{d}) \ a_n = o(b_n)$ $oxed{\mathbb{A}}$ solo (a), (b) e (c) $oxed{\mathbb{B}}$ solo (c) $oxed{\mathbb{C}}$ solo (c) e (d) $oxed{\mathbb{D}}$ nessuna $oxed{\mathbb{E}}$ solo (b) e (c) $oxed{\mathbb{F}}$ solo (d) Quesito n. 9 Sia $A = \mathbf{R} - \left\{ \sqrt{2} \right\}$. Si considerino le affermazioni: (a) √2 appartiene alla chiusura di A; (b) 0 è un punto di accumulazione per A; (c) $\sqrt{2}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (a) e (c) C solo (a) D tutte E solo (b) F nessuna **Quesito n. 10** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \quad \boxed{ E } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ C } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ D } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ E } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ \ e \ a_n = o(c_n)$ Quesito n. 11 $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a: $\boxed{A} \frac{2}{3} \boxed{B} + \infty \boxed{C}_0 \boxed{D} \frac{2}{5} \boxed{E} \frac{7}{5} \boxed{F} \frac{7}{3}$ Quesito n. 12 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{r^2}\right)$? A 1 B non esiste C_0 D 3 $E_{+\infty}$ F_0 Quesito n. 13 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione (a_n) \subset C converge; (c) se C è chiuso allora anche il suo complementare è chiuso. A (c) è vera e (a) e (b) sono false B (b) è vera e (a) e (c) sono false C (a), (b) e (c) sono tutte vere D (a) è vera e (b) e (c) sono false E (a), (b) e (c) sono tutte false F 2 affermazioni sono vere ed una è falsa Quesito n. 14 Il $\lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en}$ è uguale a: Quesito n. 15 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare f'(x). Quesito n. 16 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale A = 0 B non esiste $C = \frac{1}{2}$ D 2 $E = \sqrt{2}$ $F = +\infty$ Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni:

(a) $a_n = o(n^4) \text{ per } n \to +\infty;$ (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$.

Compito n.27 Cognome: . . .

Allora quelle vere sono:

A solo (a) e (b) B solo (c) C tutte D solo (a) E nessuna F solo (a) e (c)

n,13	n,14	n,15	n,16	n,17							
A	A	A	A	A							
B	B	B	B	B							
C	C	C	C								
D	D	D	D	D							
E	E	E	E	E							
F	F	F	F	F		n,4	n,5	n,6	n,7	n,8	n,9
A	A	A	A	A	A						
B	B	B	B	B							
C	C	C	C	C							
D	D	D	D	D							
E	E	E	E	E							
F	F	F	F	F		n.10	n.11	n.12	A	A	A

..... Matr:....

Allora quelle vere sono:

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.29 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A = 0 B + \infty C = 0 non esiste D = \sqrt{2} E = \frac{1}{2} E = 0
Quesito n. 2 II \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}
\boxed{A} - \frac{2}{5} \boxed{B} \frac{2}{5} \boxed{C} \frac{1}{5} \boxed{D} - \frac{1}{5} \boxed{E} 0 \boxed{F} + \infty
Quesito n. 3 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{x^2}\right)?
A 0 B \text{ non esiste } C + \infty D 1 E e^3 F 3
Quesito n. 4 \lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2n]{n!}+5n} è uguale a:
A = \frac{2}{2} B_0 C = \frac{2}{5} D_{+\infty} E = \frac{7}{2} F = \frac{7}{5}
 Quesito n. 5 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni:
 (a) \sqrt{2} appartiene alla chiusura di A;
 (b) 0 è un punto di accumulazione per A:
 (c) √2 è un punto interno per A.
 Allora quelle vere sono
A solo (a) e (b) B tutte C solo (a) D solo (b) E solo (a) e (c) F nessuna
Quesito n. 6 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette
   (a) a_n \approx b_n \text{ per } n \to +\infty;
  (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
\overline{A} solo (a), (b) e (c) \overline{B} nessuna \overline{C} solo (c) \overline{D} solo (d) \overline{E} solo (c) e (d) \overline{F} solo (b) e (c)
 Quesito n. 7 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
 \boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ C } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ D } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(a_n) \quad \boxed{ E
\textbf{Quesito n. 8} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{\`e} \ \text{definita solo per} \ x > 0. \ \text{Allora, per tutti i valori di} \ x \ \text{per i quali \'e} \ \text{definita,} \ h \circ g \circ f \ \text{\`e} \ \text{uguale a}
Quesito n. 9 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere?
(a) se A è aperto allora la sua frontiera è vuota;

(b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;

(c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione.
A solo (c) B solo (b) e (c) C solo (a) D tutte E solo (b) F nessuna
Quesito n. 10 II \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
Quesito n. 11 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a
A e^e B + \infty C e D 2e E 1 F e + 1
Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
Quesito n. 13 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbf{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
(c) (a<sub>n</sub>) è una successione crescente.
 Allora quelle vere sono:
A tutte B solo (a) e (c) C solo (a) D solo (c) E solo (a) e (b) F nessuna
Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
Quesito n. 15 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x).
Quesito n. 16 Si considerino le affermazioni:
 (a) \sin x - x = o(x) \text{ per } x \to 0;
(b) \sin x \approx x \text{ per } x \to 0;
 (c) \frac{\sin x}{x} \to 0 \text{ per } x \to +\infty
 Allora quelle vere sono:
A solo (b) B tutte C nessuna D solo (a) E solo (c) F solo (a) e (c)
Quesito n. 17 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
A 1 B \frac{1}{2} C +\infty D 0 E -\frac{1}{2} F -1
Compito n.29 Cognome: . . . .
```

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.17

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 <td

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.30 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (a) e (c) C solo (a) D solo (b) E nessuna F solo (c) Quesito n. 2 Sia C un sottoinsieme non vuoto di $\mathbf R$. Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora: (a), (b) e (c) sono tutte false (b) (c) è vera e (a) e (b) sono false (c) è vera e (b) e (c) sono false (d), (e) e (c) sono tutte vere (e) 2 affermazioni sono vere ed una è falsa F (b) è vera e (a) e (c) sono false Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha: $\boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{C} } \ b_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{E} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{E} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{E} \ a_n = o(b_n) \$ Quesito n. 4 II $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a: $A = \frac{8}{3}$ B_2 $C = \frac{2}{3}$ $D = \frac{4}{3}$ E_4 F_8 Quesito n. 5 II $\lim_{x \to \pm \infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale $A_0 B_1 C_{-1} D_{-\frac{1}{2}} E_{\frac{3}{2}} F_{+\infty}$ Quesito n. 6 Si considerino le affermazioni: (a) tan x − sin x = o (x) per x → 0; (b) $\sin x = o(x) \text{ per } x \to 0$; (c) $\sin x \approx \tan x \text{ per } x \to 0$ Allora quelle vere sono: A solo (c) B tutte C nessuna D solo (a) E solo (a) e (c) F solo (b) Quesito n. 7 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n-1}$ Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[4]{n}$ e $c_n = \ln n$, si ha: $\boxed{\textbf{A}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{B}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{C}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{D}} \ a_n = o(b_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{F}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e$ Quesito n. 9 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare f'(x). $\boxed{ \textbf{A} } \; \frac{1}{1-\ln^2 x} \; \; \boxed{ \textbf{B} } \; \frac{1}{x^2-x^2\ln^2 x} \; \; \boxed{ \textbf{C} } \; -\frac{1}{x+x\ln^2 x} \; \; \boxed{ \textbf{D} } \; -\frac{1}{x^2+x^2\ln^2\frac{1}{x}} \; \; \boxed{ \textbf{E} } \; \frac{1}{x+x\ln^2\frac{1}{x}} \; \; \boxed{ \textbf{F} } \; \frac{1}{1+\ln^2\frac{1}{x}} \;$ Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; **(b)** $a_n = o(2^n)$ per $n \to +\infty$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (c) B solo (a) C nessuna D solo (a) e (c) E tutte F solo (a) e (b) Quesito n. 11 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a: $A = \frac{1}{3}$ B_1 C_0 $D = \frac{1}{6}$ $E_{+\infty}$ $F = \frac{2}{3}$ Quesito n. 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ h \circ g$ è uguale a Quesito n. 13 Calcolare $\lim_{x \to 0^+} \frac{\ln(1+x^2) \sin \frac{1}{x}}{\int_{0}^{x} \frac{1}{x}}$ $f A \ 0 \ \ B \ +\infty \ \ \ C \ -1 \ \ \ D \ 1 \ \ E \ 3 \ \ \ F \ non \ esiste$ Quesito n. 14 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a: $A \frac{7}{3} B + \infty C_0 D \frac{2}{5} E \frac{7}{5} F \frac{2}{3}$ **Quesito n. 15** Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 16 Quanto vale il limite $\lim_{x\to +\infty} x \ln\left(1+\frac{3}{x}\right)$? $\boxed{A} \ 1 \quad \boxed{B} + \infty \quad \boxed{C} \text{ non esiste} \quad \boxed{D} \ 0 \quad \boxed{E} \ e^3 \quad \boxed{F} \ 3$ Quesito n. 17 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale

Compito n.30	Cognome:		Nome	:		Matr:	
n.1 n.2 n.3 A A A B B B C C C D D D E E E F F F F	n.4 n.5 n.6 A A A B B B B C C C D D D E E E F F F	n.7 n.8 n.9 A A A B B B B C C C D D D E E E E F F F	n.10 n.11 n.12 A A A B B B C C C D D D E E E F F F	n.13 n.14 n.15 A A A B B B C C C D D D E E E F F F	n.16 n.17 A A B B B C C D D E E F		

 $A \sqrt{2}$ B 2 $C \frac{1}{2}$ D non esiste E 0 $F + \infty$

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.31 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Il $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a:
$A = \frac{2}{3} B_8 C = \frac{4}{3} D = \frac{8}{3} E_4 F_2$
Quesito n. 2 $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x}\right)$ vale
$A_{+\infty} B_{-\frac{1}{2}} C_1 D_0 E_{-1} F_{\frac{1}{2}}$
Quesito n. 3 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$. Allora quelle vere sono:
A nessuna \blacksquare solo (a) e (c) \blacksquare solo (b) \blacksquare tutte \blacksquare solo (c)
Quesito n. 4 $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a:
$A = \frac{2}{3} B = \frac{7}{3} C + \infty D = \frac{2}{5} E = \frac{7}{5} E_0$
Quesito n. 5 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln \left(1 + \frac{x}{3}\right)$?
Quesito n. 6 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{\pi}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale
Quesito n. 7 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette:
(a) $a_n \approx b_n \text{ per } n \to +\infty;$
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$
(c) $a_n = O(b_n)$
$\mathbf{(d)} \ \ a_n = o(b_n)$
\overline{A} solo (c) \overline{B} solo (c) e (d) \overline{C} nessuna \overline{D} solo (b) e (c) \overline{E} solo (a), (b) e (c) \overline{F} solo (d) Quesito n. 8 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A ; (b) 5 appartiene alla chiusura di A ; (c) 9 è un punto di accumulazione per A . Allora quelle vere sono:
A nessuna B solo (a) C tutte D solo (b) E solo (a) e (c) F solo (a) e (b) Quesito n. 9 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare $f'(x)$.
Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni:
(a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$. Allora quelle vere sono:
A solo (a) B tutte C solo (c) D solo (a) e (b) E solo (a) e (c) F nessuna
Quesito n. 11 Sia C un sottoinsieme chiuso e non vuoto di \mathbf{R} . Si considerino le affermazioni: (a) in ogni caso C è compatto; (b) in ogni caso C contiene tutti i suoi punti di accumulazione; (c) in ogni caso C non ha punti interni. Allora:
A 2 affermazioni sono vere ed una è falsa B (a) è vera e (b) e (c) sono false C (c) è vera e (a) e (b) sono false D (a), (b) e (c) sono tutte false E (b) è vera e (a) e (c)
sono false $F(\mathbf{a})$, (b) e (c) sono tutte vere \mathbf{Q} uesito \mathbf{n} . 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a
Quesito n. 13 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$
$x \to 0^+$ $e^{\omega} = 1$ $A = 1$ $B = 0$ $C = \infty$ $D = \infty$ $E = \infty$ $E = \infty$ $E = \infty$
Quesito n. 14 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha:
$ \underline{\underline{\mathbf{A}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \underline{\underline{\mathbf{B}}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \underline{\underline{\mathbf{C}}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \underline{\underline{\mathbf{D}}} \ b_n = o(a_n) \underline{\underline{\mathbf{E}}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \underline{\underline{\mathbf{F}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ a_n = o(b_n)$
$oxed{\mathbb{A}}e^{rac{1}{e}+\pi}oxed{\mathbb{B}}_{+\infty}$
Ouesito n. 16 Il $\lim_{n \to \infty} n\left(e^{\frac{1}{2n}} - e^{\frac{1}{2n}}\right)$ è uguale a:

 $\boxed{A} \frac{2}{3} \boxed{B}_1 \boxed{C} \frac{1}{3} \boxed{D} \frac{1}{6} \boxed{E}_{+\infty} \boxed{F}_0$

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha:

 $\boxed{ \boxed{ \boxed{A} } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ \boxed{ \boxed{E} } \ c_n = o(b_n) \ \ e \ b_n = o(b_n) \ \ e \ b_n = o(a_n) \ \ e \ b_n = o(a_n) \ \ e \ c_n = o(a_n) \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ e \ \ c_n = o(a_n) \ \ \ c_n = o(a_n) \ \ \ e \ \ c_n =$

Compito n.31 Cognome: Nome: Matr:


```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.32 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                            Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
 Quesito n. 2 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
A = \frac{2}{5} B_0 C + \infty D = \frac{2}{5} E = \frac{1}{5} F = \frac{1}{5}
 Quesito n. 3 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni:
  (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per Â.
 Allora quelle vere sono:
 A solo (c) B nessuna C solo (b) D solo (a) e (c) E solo (a) F solo (a) e (b)
 Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
  \boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) 
 Quesito n. 5 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si ha:
  \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{C} } \ a_n = o(b_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \mathbf{E} } \ b_n =
 Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
 A + \infty B \cdot 1 C \cdot 0 D \cdot non \cdot esiste E - 1 F - \infty
 Quesito n. 7 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 oxed{A} solo (c) oxed{B} solo (b) e (c) oxed{C} solo (c) e (d) oxed{D} solo (a), (b) e (c) oxed{E} nessuna oxed{F} solo (d)
 Quesito n. 8 Il \lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
 A 2 B \sqrt{2} C non esiste D +\infty E \frac{1}{2}
 Quesito n. 9 Si considerino le affermazioni:
 (a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;
 (c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
Allora quelle vere sono:
 A tutte B nessuna C solo (a) D solo (a) e (c) E solo (c) F solo (b)
 Quesito n. 10 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
\boxed{\mathbf{A}} \frac{1}{6} \quad \boxed{\mathbf{B}} + \infty \quad \boxed{\mathbf{C}} \quad \boxed{\mathbf{0}} \quad \boxed{\mathbf{D}} \frac{1}{3} \quad \boxed{\mathbf{E}} \quad \boxed{\mathbf{1}} \quad \boxed{\mathbf{F}} \frac{2}{3}
 Quesito n. 11 II \lim_{n \to +\infty} \left(1 + \frac{1}{n+2}\right)^{n+e} è uguale a:
  Quesito n. 12 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) il complementare di C è sempre aperto;
  (b) in ogni caso C contiene la sua frontiera;
 (c) C può avere punti isolati. Allora:
 (a) è vera e (b) e (c) sono false (b) (a), (b) e (c) sono tutte vere (c) (b) è vera e (a) e (c) sono false (b) (a), (b) e (c) sono tutte false (c) 2 affermazioni sono vere ed
 una è falsa 🖺 (c) è vera e (a) e (b) sono false
 Quesito n. 13 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1+\frac{3}{x^2}\right)?
 Quesito n. 14 \lim_{n\to+\infty} \frac{7n^n+2\cdot n!}{3e^{n\ln n}+5e^{\ln^2 n}} è uguale a:
\boxed{A}_{+\infty} \boxed{B}_{\frac{7}{3}} \boxed{C}_{\frac{7}{5}} \boxed{D}_{\frac{2}{3}} \boxed{E}_{\frac{2}{5}} \boxed{F}_{0}
 Quesito n. 15 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
A_1 \quad B - \frac{1}{2} \quad C - \infty \quad D - \frac{1}{3} \quad E_0 \quad F - 1
 Quesito n. 17 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) \text{ per } n \to +\infty;
 (b) a_n = o(n^2) per n \to +\infty;

(b) a_n = o(n^2) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
 A solo (c) B solo (a) e (c) C nessuna D tutte E solo (a) e (b) F solo (a)
```

 1. n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.

 1. A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A</td

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Compito n.33 del test di preselezione per il I esonero
   Quesito n. 1 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
(a) a_n \approx b_n \text{ per } n \to +\infty
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
      (c) a_n = O(b_n)
     (d) a_n = o(b_n)
 Quesito n. 3 Il \lim_{n \to +\infty} n\left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
Quesito n. 4 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere?

(a) se A è aperto allora la sua frontiera è vuota;
(b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;

   (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
 A solo (b) e (c) B tutte C nessuna D solo (c) E solo (a) F solo (b)
 Quesito n. 5 Quanto vale il limite \lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)?
 A + \infty B \cdot 1 C \cdot 0 D \cdot e^3 E \cdot non \cdot esiste E \cdot 3
                                                                  \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} \quad \text{è uguale a:}
 Quesito n. 6
 A \frac{7}{3} B \frac{7}{5} C \frac{2}{2} D_0 E \frac{2}{5} F + \infty
 Quesito n. 7 Il \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
 A = \frac{8}{3} = 8 = C_4 = D = \frac{2}{3} = 2 = E_2 = \frac{4}{3}
  Quesito n. 8 Si considerino le affermazioni:
 (a) \ln(1+x) = o(x) per x \to 0;

(b) \ln(1-x) = -x + o(x) per x \to 0;
 (c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono:
 oxed{A} solo (c) oxed{B} tutte oxed{C} solo (b) oxed{D} solo (a) e (c) oxed{E} nessuna oxed{F} solo (a)
 Quesito n. 9 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
 A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 2 \end{bmatrix} C = \begin{bmatrix} 2 \\ 2 \end{bmatrix} D = \begin{bmatrix} 1 \\ 2 
 Quesito n. 10 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ f \circ g è uguale a
 Quesito n. 11 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
 Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
  \boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{B}}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{C}}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{D}}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) } 
 Quesito n. 13 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
  (a) a_n = o(n!) \text{ per } n \to +\infty;
 (b) a_n = o(2^n) per n \to +\infty;
(c) \sqrt{n} = o(a_n) per n \to +\infty.
   Allora quelle vere sono:
 A solo (a) B solo (c) C solo (a) e (c) D tutte E solo (a) e (b) F nessuna
  Quesito n. 14 \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+x} \right) vale
 A + \infty B_1 C_{\frac{1}{2}} D_0 E_{-\frac{1}{2}} F_{-1}
  Quesito n. 15 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni

 (a) √2 appartiene alla chiusura di A;

   (b) 0 è un punto di accumulazione per A:
  (c) \sqrt{2} è un punto interno per A. Allora quelle vere sono:
 A solo (a) B nessuna C solo (a) e (b) D solo (a) e (c) E solo (b) F tutte
 Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[5]{n} e c_n = \ln n, si ha:
  \boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_
 Quesito n. 17 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
 \boxed{ \underline{\mathbf{A}} \ e^{\sqrt{2} + x^2} \quad \underline{\mathbf{B}} \ 2xe^{\sqrt{2} + x^2} \quad \underline{\mathbf{C}} \ \frac{e^{\sqrt{2} + x^2}}{2\sqrt{2} + x^2} \quad \underline{\mathbf{D}} \ \frac{xe^{\sqrt{2} + x^2}}{\sqrt{2} + x^2} \quad \underline{\mathbf{E}} \ 2xe^{\frac{1}{2\sqrt{2} + x^2}} \quad \underline{\mathbf{F}} \ e^{\frac{x}{\sqrt{2} + x^2}}
```

Compito n.33	Cognome:		Nome	E		Matr:	
n.1 n.2 n.3 A A A B B B B C C C C D D D D E E E E	n.4 n.5 n.6 A A A B B B B C C C D D D E E E F F F	n.7 n.8 n.9 A A A B B B C C C D D D E E E E F F F	n.10 n.11 n.12 A A A B B B B C C C C D D D E E E E F F F	n.13 n.14 n.15 A A A B B B B C C C C D D D E E E E F F F	n.16 n.17 A A B B C C C D D D E E F		

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.34 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a:
$\boxed{\mathbb{A} \frac{1}{3}} \boxed{\mathbb{B} \frac{2}{3}} \boxed{\mathbb{C} \frac{1}{6}} \boxed{\mathbb{D}}_0 \boxed{\mathbb{E}}_{+\infty} \boxed{\mathbb{F}}_1$
Quesito n. 2 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0$;
(b) $e^{2x} - e^x = x + o(x)$ per $x \to +\infty$; (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x}$ per $x \to +\infty$.
Allora quelle vere sono:
$oxed{\mathbb{A}}$ solo (b) $oxed{\mathbb{B}}$ nessuna $oxed{\mathbb{C}}$ solo (c) $oxed{\mathbb{D}}$ solo (a) e (c) $oxed{\mathbb{E}}$ solo (a) $oxed{\mathbb{F}}$ tutte $oxed{\mathbf{Quesito}}$ n. 3 $oxed{11}$ $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right)$ vale
$lack A_1 lack B_{-1} lack C_{-rac{1}{2}} lack D_0 lack E_{+\infty} lack F_{rac{1}{2}}$
Quesito n. 4 Sia C un sottoinsieme chiuso e non vuoto di \mathbf{R} . Si considerino le affermazioni: (a) il complementare di C è sempre aperto;
 (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati.
Allora:
false 🖺 2 affermazioni sono vere ed una è falsa
Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100\sqrt{n}$, si ha:
Quesito n. 6 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$
$A + \infty$ $B - \infty$ $C = 0$ $D = 1$ $E - 1$ $E = 1$ for none esiste Quesito n. 7 II $\lim_{x \to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a:
$\boxed{\frac{1}{2}} \ \boxed{\mathbb{B}} \ 2 \ \boxed{\mathbb{C}} \ 0 \ \boxed{\mathbb{D}} \ 1 \ \boxed{\mathbb{E}} + \infty \boxed{\mathbb{F}} \text{ non esiste in } \mathbf{R}^*$ $\boxed{\text{Quesito n. 8 Date le successioni } (a_n), (b_n) \in (c_n) \text{ definite da } a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} \in c_n = n^8, \text{ si ha:}$
Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha:
Quesito n. 11 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^2$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a $\boxed{\triangle} (\ln x)^{\ln^2 x} \boxed{\mathbb{E}} (\ln x)^{2\ln x} \boxed{\mathbb{E}} x^2 \ln^2 x \boxed{\mathbb{E}} (\ln x)^{2\ln x^2} \boxed{\mathbb{E}} 2x^2 \ln x \boxed{\mathbb{E}} 2x \ln x$
Quesito n. 12 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette:
(a) $a_n \approx b_n \text{ per } n \to +\infty;$
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$
(c) $a_n = O(b_n)$
(d) $a_n = o(b_n)$
$oxed{A}$ solo (c) $oxed{B}$ solo (a), (b) e (c) $oxed{C}$ nessuna $oxed{D}$ solo (c) e (d) $oxed{E}$ solo (b) e (c)
Quesito n. 13 $\lim_{n \to +\infty} \frac{7\sqrt[n]{(2n)!} + 2(n^{\ln n})^2}{3n^{\ln n^2} + 5\ln((3n)!)}$ è uguale a:
$\overline{\mathbb{A}} \frac{7}{5} \overline{\mathbb{B}} \overline{\mathbb{C}} \frac{2}{5} \overline{\mathbb{D}} \frac{7}{3} \overline{\mathbb{E}}_{+\infty} \overline{\mathbb{F}} \frac{2}{3}$
Quesito n. 14 Sia $A = [-3, 3] \cap Q$. Si considerino le affermazioni: (a) $0 \in A$ è un punto interno per A :
(b) $0 \in \text{un punto di accumulazione per } A;$ (c) $\sqrt{3} \in \text{un punto interno per } A.$
Allora quelle vere sono:
A tutte B nessuna C solo (a) e (b) D solo (a) e (c) E solo (b)
Quesito n. 15 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale
$\boxed{\mathbb{A}} \frac{1}{2} \boxed{\mathbb{B}} \sqrt{2} \boxed{\mathbb{C}} \text{ non esiste} \boxed{\mathbb{D}} 2 \boxed{\mathbb{E}}_{+\infty} \boxed{\mathbb{F}} 0$
Quesito n. 16 Quanto vale il limite $\lim_{x\to+\infty} x^2 \ln\left(1+\frac{3}{x}\right)$?
$oxed{\mathbb{A}}$ non esiste $oxed{\mathbb{B}} e^3$ $oxed{\mathbb{C}} 0$ $oxed{\mathbb{D}}_{+\infty}$ $oxed{\mathbb{E}} 1$ $oxed{\mathbb{F}} 3$
Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:
(a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$;
(c) $\lim_{n\to+\infty} a_n = +\infty$.
Allora quelle vere sono: A tutte B nessuna C solo (c) D solo (a) E solo (a) e (c) F solo (a) e (b)
Compite n.34 Cornome: Nome: Matr:

 Compite n.34
 Cognome:
 Nome:
 Matr:

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.17

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.35 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                      Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Si considerino le affermazioni
  (a) e^x - \cos x = o(x) \text{ per } x \to 0;
 (b) 1 - \cos x = x + o(x) per x \to 0;
  (c) e^x - \cos x \approx x \text{ per } x \to 0.
 Allora quelle vere sono:
 A solo (c) B solo (a) C solo (a) e (b) D solo (b) e (c) E nessuna F solo (b)
 Quesito n. 2 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
\boxed{\mathbf{A}}_0 \boxed{\mathbf{B}}_{\frac{1}{3}} \boxed{\mathbf{C}}_{\frac{2}{3}} \boxed{\mathbf{D}}_1 \boxed{\mathbf{E}}_{\frac{1}{6}} \boxed{\mathbf{F}}_{+\infty}
 Quesito n. 4 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni:

 (a) se C è chiuso e limitato allora è anche compatto;

  (b) se C è chiuso allora ogni successione (a_n) \subset C converge;
 (c) se C è chiuso allora anche il suo complementare è chiuso. Allora:
 A (c) è vera e (a) e (b) sono false (a), (b) e (c) sono tutte vere (a) e (c) e vera e (a) e (b) e (c) sono tutte false (b) è vera e (a) e (c)
 sono false F (a) è vera e (b) e (c) sono false
 Quesito n. 5 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni
  (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A. Allora quelle vere sono:
 A solo (a) e (c) B nessuna C solo (c) D solo (a) E solo (a) e (b) F solo (b)
 Quesito n. 6 Date a_n = \frac{3}{n} e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 Quesito n. 7 Il \lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e} è uguale a:
 A e^e B e C + \infty D \sqrt{e^e} E \sqrt{e} F 
 Quesito n. 8 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
 A - \frac{1}{2} B - 1 C 1 D \frac{1}{2} E + \infty F 0
 Quesito n. 9 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
 A 1 B +\infty C -1 D -\infty E 0 F non esiste
 Quesito n. 10 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
  (c) (a<sub>n</sub>) è una successione crescente.
  Allora quelle vere sono:
 A solo (c) B solo (a) e (c) C tutte D nessuna E solo (a) F solo (a) e (b)
 Quesito n. 11 \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} è uguale a:
 Quesito n. 12 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
 A + \infty B - \frac{1}{5} C_0 D - \frac{2}{5} E \frac{1}{5} F \frac{2}{5}
 Quesito n. 13 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ g \circ h è uguale a
 Quesito n. 14 Date le successioni (a_n), (b_n) e (c_n) definite da a_n=2^n \ln n, b_n=n^5 \ln n e c_n=2^n, si ha:
  \boxed{ \triangle } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \quad \boxed{ E } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \quad \boxed{ C } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ D } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ E } \ c_n = o(b
 Quesito n. 15 Quanto vale il limite \lim_{x\to 0+} x \ln\left(1+\frac{3}{x}\right)?
 A non esiste B 1 C 3 D e^3 E 0 F +\infty
 Quesito n. 16 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
```


Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $b_n = 3^n$ e $c_n = 2^n$, si hacing the property of the succession a_n is the succession of a_n and a_n is the succession a_n is the

A 2 B 0 C $\sqrt{2}$ D $\frac{1}{2}$ E non esiste F $+\infty$

 $\boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n)$

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.36 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Quanto vale il limite $\lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)$? $oxed{A}_0 \quad oxed{B}_{\text{non esiste}} \quad oxed{C}_1 \quad oxed{D}_3 \quad oxed{E}_{+\infty} \quad oxed{F}_{e^3}$ Quesito n. 2 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale as $\boxed{A} \frac{1}{6} \boxed{B} + \infty \boxed{C} \frac{2}{3} \boxed{D} 1 \boxed{E} \frac{1}{3} \boxed{F} 0$ Quesito n. 3 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale $A = \frac{3}{2} \quad B + \infty \quad C \quad 1 \quad D - \frac{1}{2} \quad E - 1 \quad F \quad 0$ **Quesito n. 4** Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a $\boxed{ \textbf{A} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ 2x \ln x \quad \boxed{ \textbf{C} } \left(\ln x \right)^{2 \ln x} \quad \boxed{ \textbf{D} } \ x^2 \ln^2 x \quad \boxed{ \textbf{E} } \left(\ln^2 x \right)^{\ln^2 x} \quad \boxed{ \textbf{F} } \ 2x^2 \ln |x|$ Quesito n. 5 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere? (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione A nessuna B solo (b) C tutte D solo (a) E solo (c) F solo (b) e (c) Quesito n. 6 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \in c_n = o(a_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \square } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \qquad \boxed{ \blacksquare } \ a_n = o(b_n) \in b_n = o(c_n)$ Quesito n. 7 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale $A_0 B_2 C_{\text{non esiste}} D_{+\infty} E_{\frac{1}{2}} F_{\sqrt{2}}$ Quesito n. 8 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 9 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!) \text{ per } n \to +\infty;$ (b) $a_n = o(2^n) \text{ per } n \to +\infty;$ (c) $\sqrt{n} = o(a_n) \text{ per } n \to +\infty$ Allora quelle vere sono: A solo (a) B solo (a) e (c) C solo (c) D solo (a) e (b) E nessuna F tutte Quesito n. 10 Sia $A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}$. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A;
(b) -2 è un punto di accumulazione per A;
(c) 2⁻¹⁰⁰ è un punto di accumulazione per A Allora quelle vere sono: A nessuna B tutte C solo (b) D solo (a) e (b) E solo (a) e (c) F solo (a) Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{E} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{C} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \mathbf{F} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n)$ Quesito n. 12 Calcolare $\lim_{x \to 0^+} \frac{\ln(1+x^2) \sin \frac{1}{x}}{\ln x}$ $A + \infty$ B = 3 C = 0 D = 1 E = 1 E = 1 non esiste Quesito n. 13 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x). Quesito n. 14 Il $\lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}$ $\boxed{\mathbf{A}} \ \frac{3}{4} \quad \boxed{\mathbf{B}} \ -\infty \quad \boxed{\mathbf{C}} \ \frac{1}{4} \quad \boxed{\mathbf{D}} \ \frac{1}{2} \quad \boxed{\mathbf{E}} \ -1 \quad \boxed{\mathbf{F}} \ 3$ Quesito n. 15 Il $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^n$ $A \ 0 \quad B e^{-e+\pi} \quad C \ 1 \quad D e \quad E e^{-\pi} \quad F \quad \frac{1}{2}$ $7n^{2n} + 2(n!)^2$ Quesito n. 16 $\lim_{n \to +\infty} \frac{n + 2(n)}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a: $\boxed{A}_0 \boxed{B}_{\frac{7}{5}} \boxed{C}_{+\infty} \boxed{D}_{\frac{2}{5}} \boxed{E}_{\frac{2}{3}} \boxed{F}_{\frac{7}{3}}$ Quesito n. 17 Si considerino le affermazioni: (a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$

(c) $e^x - 1 = x + o(x)$ per $x \to +\infty$.

Allora quelle vere sono:

A solo (a) B solo (c) C solo (a) e (c) D nessuna E solo (b) e (c) F solo (b)

Compito n.36 Cognome:

Nome:

Nome:

Matr:

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.37 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Calcolare $\lim_{x \to 0^+} \frac{\left(1 + \sin^2 \frac{1}{x}\right) (e^x - 1)}{\frac{1}{2} \left(1 + \sin^2 \frac{1}{x}\right)}$ $A_{-\infty}$ $B_{+\infty}$ C_1 D_{-1} $E_{non esiste}$ Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o($ Quesito n. 3 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$? A 1 B $\frac{1}{2}$ C non esiste in \mathbb{R}^* D $+\infty$ E 2 F 0 Quesito n. 5 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a: $\boxed{A} \frac{2}{5} \boxed{B}_0 \boxed{C} \frac{2}{3} \boxed{D}_{+\infty} \boxed{E} \frac{7}{3} \boxed{F} \frac{7}{5}$ Quesito n. 6 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$. Allora quelle vere sono: A solo (b) B nessuna C solo (a) D tutte E solo (a) e (c) F solo (c) Quesito n. 7 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbf{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) B tutte C nessuna D solo (a) e (c) E solo (c) F solo (a) e (b) Quesito n. 8 Il $\lim_{n\to+\infty} \left(e + \frac{1}{n^2}\right)^n$ è uguale a: Quesito n. 9 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ h \circ g$ è uguale a Quesito n. 10 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[5]{n}$ e $c_n = \ln n$, si ha: $\boxed{ \textbf{A} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{B} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{D} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{F} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} \$ Quesito n. 11 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A;
(b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B nessuna C solo (a) D tutte E solo (b) F solo (a) e (c)

Quesito n. 12 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ $(\mathbf{d}) \ a_n = o\left(b_n\right)$ $oxed{A}$ solo (c) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (a), (b) e (c) $oxed{D}$ solo (d) $oxed{E}$ solo (b) e (c) $oxed{F}$ nessuma Quesito n. 13 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). $\frac{\boxed{\textbf{A}} \ \frac{1}{1+e^{2x}} \ \boxed{\textbf{B}} \ \frac{e^{2x}}{1+e^{x^2}} \ \boxed{\textbf{C}} \ \frac{1}{1+e^{x^2}} \ \boxed{\textbf{D}} \ \frac{2xe^{x^2}}{1+e^{x^2}} \ \boxed{\textbf{E}} \ \frac{e^{x^2}}{1+e^{x^2}} \ \boxed{\textbf{F}} \ \frac{1}{2xe^{2x}}}$ Quesito n. 14 $\ 11 \ \lim_{n \to +\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right)$ è uguale a: $A + \infty$ B_1 $C \frac{1}{6}$ D_0 $E \frac{1}{3}$ $F \frac{2}{3}$ Quesito n. 15 Sia C un sottoinsieme non vuoto di ${\bf R}$. Si considerino le affermazioni (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. A (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (2 affermazioni sono vere ed una è falsa (D) (a), (b) e (c) sono tutte vere (a) e (b) e vera e (a) e (b) sono false E (a) è vera e (b) e (c) sono false Quesito n. 16 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right)$ vale $A_0 B_{\frac{1}{2}} C_1 D_{-1} E_{-\frac{1}{2}} F_{+\infty}$ Quesito n. 17 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale $A\sqrt{2}$ B C O D non esiste $E + \infty$ F $\frac{1}{2}$

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.38 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                       Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
Quesito n. 3 Il \lim_{x\to +\infty} \overline{\sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+x} \right)} vale
 f A = -1 \quad B = +\infty \quad C \quad 0 \quad D = -\frac{1}{2} \quad E \quad \frac{1}{2} \quad F \quad 1
 Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
  \boxed{ \triangle } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \quad \boxed{ C } \ a_n = o(b_n) \ e \ b_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ E } \ a_n = o(b_n) \quad 
 Quesito n. 5 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
    (b) \lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
 oxed{A} solo (c) e (d) oxed{B} solo (b) e (c) oxed{C} solo (c) oxed{D} solo (a), (b) e (c) oxed{E} nessuma oxed{F} solo (d)
  Quesito n. 6 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha:
  \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \ \boxed{ \mathbf{C} } \ c_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \ \boxed{ \mathbf{E
  Quesito n. 7 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni:
  (a) 1 è un punto di accumulazione per A;(b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per A.
  Allora quelle vere sono:
 A solo (a) e (c) B nessuna C solo (a) D solo (c) E solo (a) e (b) F solo (b)
 Quesito n. 8 Si considerino le affermazioni:
  (a) \ln(1+x) = o(x) \text{ per } x \to 0;
(b) \ln(1-x) = -x + o(x) \text{ per } x \to 0;
 (c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
  Allora quelle vere sono:
 A solo (c) B nessuna C solo (a) e (c) D tutte E solo (a) F solo (b)
 Quesito n. 9 \lim_{n\to+\infty} \frac{7n^{2n}+2(n!)^2}{3(\sqrt{n})^{3n}+5n^{\ln n}} è uguale a:
 A_0 \quad B \stackrel{?}{=} \quad C \stackrel{?}{=} \quad D_{+\infty} \quad E \stackrel{?}{=} \quad F \stackrel{?}{=} 
 Quesito n. 10 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
 A + \infty B = \frac{3}{2} C non esiste in R^* D = \frac{1}{2} E = 0 E = 2
 Quesito n. 11 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln \left(1+\frac{x}{3}\right)?
 Quesito n. 12 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
  (a) a_n = o(n!) \text{ per } n \to +\infty;
  (b) a_n = o(2^n) per n \to +\infty;
(c) (a_n) è una successione crescente
\boxed{\mathbf{A}} \ 0 \quad \boxed{\mathbf{B}} \ \text{non esiste} \quad \boxed{\mathbf{C}} \ \sqrt{2} \quad \boxed{\mathbf{D}} \ \frac{1}{2} \quad \boxed{\mathbf{E}} + \infty \quad \boxed{\mathbf{F}} \ 2
 Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
 A non esiste B 1 \mathbb{C}_{+\infty} D -1 \mathbb{E}_{-\infty} \mathbb{F}_{0}
 Quesito n. 15 Il \lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e} è uguale a
 Quesito n. 16 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
 A_1 B_{\frac{2}{3}} C_{\frac{1}{3}} D_0 E_{+\infty} F_{\frac{1}{6}}
 Quesito n. 17 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni:
  (a) in ogni caso C è compatto;
  (b) in ogni caso C contiene tutti i suoi punti di accumulazione
 (c) in ogni caso C non ha punti interni. Allora:
 (a), (b) (c) sono tutte false (B) 2 affermazioni sono vere ed una è falsa (C) (a), (b) (c) sono tutte vere (D) (c) è vera e (a) (e) sono false (E) (a) è vera e (b) (c)
 sono false F (b) è vera e (a) e (c) sono false
 n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E
                                                                                                                                     n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E E
                                            A A A A B B B C C C C C D D D D E E E E
```

```
Compito n.39 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                             Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
                                                  \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}
 Quesito n. 1
                                                                                                                     è uguale a:
Quesito n. 2 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
A 2 B +\infty C \frac{1}{2} D non esiste E 0 F \sqrt{2}
Quesito n. 3 Il \lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{(1 - \cos \frac{3}{n})} è uguale a:
A = \frac{1}{3} B_1 C = \frac{1}{6} D = \frac{2}{3} E_0 F_{+\infty}
Quesito n. 4 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi} è uguale a:
A e^{-e+\pi} B 1 C 0 D e^{-\pi} E e F \frac{1}{e}
Quesito n. 5 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}
A 1 B 0 C_{-\infty} D +\infty E -1 F non esiste
Quesito n. 7 Si considerino le affermazioni:
Questo 1. t S considerino le altern

(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;

(c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.

Allora quelle vere sono:
A solo (a) B tutte C nessuna D solo (a) e (c) E solo (b) F solo (c)
Quesito n. 8 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ g \circ h è uguale a
Quesito n. 9 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
 \boxed{ \mathbb{A} \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{ \mathbb{B} \ -\frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{C} \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{D} \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{E} \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{ \mathbb{F} \ \frac{1}{2\sqrt{1+x\sqrt{x}}} } } 
Quesito n. 10 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
A + \infty B non esiste in R^* C \frac{1}{2} D -\infty E 1 F 0
Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si has
 \boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{C}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{D}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{E}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{F}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf
Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
 \boxed{ \underline{\mathbf{A}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) } \quad \boxed{ \underline{\mathbf{B}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) } \quad \boxed{ \underline{\mathbf{C}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \underline{\mathbf{D}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) } \quad \boxed{ \underline{\mathbf{E}} 
Quesito n. 13 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
(a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.

Allora quelle vere sono:
A solo (a) e (c) B solo (c) C tutte D solo (a) E solo (a) e (b) F nessuna
 Quesito n. 14 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni:
  (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A.
  Allora quelle vere sono:
A solo (a) e (b) B nessuna C solo (a) e (c) D solo (c) E solo (b) F solo (a)
Quesito n. 15 Sia C un sottoinsieme non vuoto di \mathbf R. Si considerino le affermazioni:
  (a) se C è chiuso e limitato allora è anche compatto:
  (b) se C è chiuso allora ogni successione (a_n) \subset C converge;
  (c) se C è chiuso allora anche il suo complementare è chiuso.
  Allora:
A (a), (b) e (c) sono tutte vere B 2 affermazioni sono vere ed una è falsa C (a), (b) e (c) sono tutte false D (c) è vera e (a) e (b) sono false E (a) è vera e (b) e (c)
sono false F (b) è vera e (a) e (c) sono false
Quesito n. 16 Quanto vale il limite \lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)?
A non esiste Be^3 C_3 D_1 E_{+\infty} F_0
Quesito n. 17 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
A - \frac{1}{2} B - \frac{1}{3} C - \infty D_0 E - 1 F_1
                                                                                                                                                                                                                               ..... Matr:....
Compito n.39 Cognome:
                                                                                                                                             n.10 n.11 n.12
A A A B
B B B
C C C C
D D D
E E E E
                                                                                                                                                                                           n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E
                                                                                              n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
  | N.5 | N.6 | A | A | B | B | B | B | C | C | C | D | D | D | E | E | E | E |
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.40 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Il $\lim_{n\to+\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right)$ è uguale a $\boxed{\mathbf{A}} \quad \frac{1}{3} \quad \boxed{\mathbf{B}} \quad \frac{1}{6} \quad \boxed{\mathbf{C}} + \infty \quad \boxed{\mathbf{D}} \quad 1 \quad \boxed{\mathbf{E}} \quad \frac{2}{3} \quad \boxed{\mathbf{F}} \quad 0$ Quesito n. 2 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$ $A + \infty$ B - 1 C non esiste D 0 $E - \infty$ F 1Quesito n. 3 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a: A 1 B non esiste in \mathbb{R}^* C 0 D $\frac{1}{2}$ E $+\infty$ F 2 Quesito n. 4 Sia C un sottoinsieme chiuso e non vuoto di ${\bf R}$. Si considerino le affermazioni (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: 🖾 (a), (b) e (c) sono tutte vere 🖺 2 affermazioni sono vere ed una è falsa 🖸 (a), (b) e (c) sono tutte false 🗓 (a) è vera e (b) e (c) sono false 🖺 (c) è vera e (a) e (b) sono false F (b) è vera e (a) e (c) sono false Quesito n. 5 Si considerino le affermazioni: (a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$ (c) $e^x - 1 = x + o(x) \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (a) B solo (b) C solo (c) D solo (a) e (c) E solo (b) e (c) F nessuna Quesito n. 6 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni (a) 0 è un punto interno per A; (b) 0 è un punto di accumulazione per A;(c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (c) B solo (a) e (b) C tutte D solo (b) E nessuna F solo (a) Quesito n. 7 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a: $A e B e^2 C_1 D e^e E_{+\infty} F \sqrt{e}$ Quesito n. 8 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4) \text{ per } n \to +\infty;$ (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono: A nessuna B solo (c) C solo (a) e (b) D tutte E solo (a) e (c) F solo (a) Quesito n. 9 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $\boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{B}}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{C}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) }$ Quesito n. 10 Il $\lim_{x\to+\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}}$ vale A 0 B non esiste $\mathbb{C}\sqrt{2}$ D 2 $\mathbb{E}\frac{1}{2}$ $\mathbb{F}+\infty$ Quesito n. 11 Il $\lim_{x\to 1} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale $A_0 B_{\frac{1}{2}} C_{-\frac{1}{2}} D_{-1} E_{+\infty} F_1$ Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}}$ $A = \frac{2}{5} B + \infty$ $C = \frac{7}{3}$ $D = \frac{2}{3}$ $E_0 = \frac{7}{5}$ Quesito n. 13 Quanto vale il limite $\lim_{x\to +\infty} x^2 \ln\left(1+\frac{3}{x}\right)$? $\boxed{\textbf{A} \ 3\cos^2\left(\frac{1}{x}\right) \quad \boxed{\textbf{B}} \ 3\sin^2\left(\ln x\right)\cos\left(\ln x\right) \quad \boxed{\textbf{C}} \ \frac{3}{x}\sin^2\left(\ln x\right)\cos\left(\ln x\right) \quad \boxed{\textbf{D}} \ \cos^3\left(\ln x\right) \quad \boxed{\textbf{E}} \ \sin^3\left(\frac{1}{x}\right) \quad \boxed{\textbf{F}} \ \frac{3}{x}\cos^2\left(\ln x\right)$ Quesito n. 15 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=n\ln n$, $b_n=n\sqrt{n}$ e $c_n=\frac{n^2}{\ln n}$, si ha: $\boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n)$ Quesito n. 17 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D
E E E E
F F F n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
F F F n.13 n.14 n.15
A A A
B B B B
C C C C

D E D E

```
Compito n.41 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                            Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
(b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
 Allora quelle vere sono:
A 0 B 1 C non esiste in \mathbb{R}^* D \frac{1}{2} E -\infty F +\infty
 Quesito n. 4 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
 \frac{ \boxed{ \underline{\mathbf{A}} } \ \frac{1}{x^2 \ln^2 \left( 1 + \frac{1}{x} \right) } \ \boxed{ \underline{\mathbf{B}} } - \frac{1}{x^2} \ln \left( 1 + \frac{1}{x} \right) \ \boxed{ \underline{\mathbf{C}} } \ 1 + \frac{1}{x} \ \boxed{ \underline{\mathbf{D}} } \ \frac{1}{(x^2 + x) \ln^2 \left( 1 + \frac{1}{x} \right) } \ \boxed{ \underline{\mathbf{E}} } - \frac{1}{x^2} - \frac{1}{x^3} \ \boxed{ \underline{\mathbf{F}} } \ \frac{-x}{(x+1) \ln^2 \left( 1 + \frac{1}{x} \right) } } \\ \mathbf{Quesito \ n. \ 5} \ \mathsf{Calcolare} \ \lim_{x \to 0^+} \frac{ \left( 1 + \sin^2 \frac{1}{x} \right) \left( e^x - 1 \right) }{\ln (1 + x^2)} 
 oxed{A} \ 0 \quad oxed{B} \ \text{non esiste} \quad oxed{C} \ +\infty \quad oxed{D} \ 1 \quad oxed{E} \ -1 \quad oxed{F} \ -\infty
 Quesito n. 6 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
 Quesito n. 7 \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} è uguale a
 A_0 \xrightarrow{B} \frac{7}{5} \xrightarrow{C} \frac{7}{3} \xrightarrow{D} + \infty \xrightarrow{E} \frac{2}{5} \xrightarrow{F} \frac{2}{3}
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^{n^2}, b_n = 3^n e c_n = 2^n, si ha
 Quesito n. 9 Si considerino le affermazioni:
 (a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;

(c) e^x - 1 = x + o(x) \text{ per } x \to 0;
 Allora quelle vere sono
 A solo (a) e (c) B solo (c) C solo (a) D nessuna E solo (b) F solo (b) e (c)
 Quesito n. 10 II \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
A_0 B_1 C_{\frac{1}{3}} D_{\frac{2}{3}} E_{+\infty} F_{\frac{1}{6}}
 Quesito n. 11 \lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}} vale
 A \frac{1}{2} B 0 C 2 D non esiste E \sqrt{2} F +\infty
 Quesito n. 12 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;
 (b) \lim_{n \to +\infty} a_n = +\infty;
  (c) (a_n) è una successione crescente.
 Allora quelle vere sono:
 A solo (c) B tutte C solo (a) e (c) D nessuna E solo (a) e (b) F solo (a)
 Quesito n. 13 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
 A_{+\infty} = 0 = 0 = 0 = 0
 Quesito n. 14 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 Quesito n. 15 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell con \ell finito e non nullo;
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 Quesito n. 16 Sia C un sottoinsieme non vuoto di \mathbf{R}. Si considerino le affermazioni:
  (a) se C è chiuso allora è anche limitato;
  (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
 (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora:
 (a) è vera e (a) e (c) sono false (b) (c) è vera e (a) e (b) sono false (c) è vera e (a) e (b) sono false (c) sono false (d) (d) è vera e (b) e (c) sono false (d) (d) (d) e (c) sono tutte false (e) (d) (e) (e) sono tutte
 vere 🖺 2 affermazioni sono vere ed una è falsa
 Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
  \boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{B} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \
 n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.42 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a:
Quesito n. 2 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:
(a) $\sup_{n \in \mathbb{N}} a_n = +\infty$;
(b) $\lim_{n \to +\infty} a_n = +\infty$; (c) (a_n) è una successione crescente.
Allora quelle vere sono:
A solo (a) e (b) B tutte C solo (a) e (c) D solo (c) E nessuna F solo (a) Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha:
$ \stackrel{\triangle}{\mathbf{A}} \left(\ln x^2\right)^{\ln x^2} \stackrel{\triangle}{\mathbf{B}} \left(\ln^2 x\right)^{\ln^2 x} \stackrel{\triangle}{\mathbf{C}} \left(x^2 \ln^2 x\right) \stackrel{\triangle}{\mathbf{D}} \left(2x \ln x\right) \stackrel{\triangle}{\mathbf{E}} \left(\ln x\right)^{2\ln x} \stackrel{\triangle}{\mathbf{E}} \left(2x \ln x\right) \stackrel{\triangle}{\mathbf{E}} \left(2x \ln x\right$
Quesito n. 5 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a:
$A + \infty$ $B = \frac{2}{5}$ $C = \frac{7}{5}$ D_0 $E = \frac{2}{3}$ $E = \frac{7}{3}$
Quesito n. 6 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette:
(a) $a_n \approx b_n \text{ per } n \to +\infty;$
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$
$\mathbf{(d)} \ a_n = O(b_n)$
$oxed{A}$ solo (a), (b) e (c) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (b) e (c) $oxed{D}$ nessuna $oxed{E}$ solo (d) $oxed{F}$ solo (c)
Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha:
$ \underline{\mathbf{A}} \frac{2}{3} \underline{\mathbf{B}} \underline{\mathbf{C}} \underline{0} \underline{1} \underline{1} \underline{\mathbf{E}} \underline{1} \underline{\mathbf{F}} + \infty $ $ \mathbf{Quesito n. 9 Calcolare} \lim_{x \to 0^+} \frac{\ln(1 + \sin^2 x) \sin \frac{1}{x}}{e^x - 1} $
$A + \infty$ B_1 C_0 D_{-1} E non esiste $F_{-\infty}$ Quesito n. 10 Si considerino le affermazioni:
(a) $\sin x - x = o(x)$ per $x \to 0$; (b) $\sin x \approx x$ per $x \to 0$;
(c) $\frac{\sin x}{x} \to 0 \text{ per } x \to +\infty.$
Allora quelle vere sono:
A tutte B solo (b) C solo (a) e (c) D solo (a) E solo (c) F nessuna Quesito n. 11 $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Quesito n. 12 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare $f'(x)$.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 13 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Quesito n. 14 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A :
(b) 1 è un punto di frontiera per A;
(c) 1 è un punto interno per A. Allora quelle vere sono:
A solo (b) B solo (a) e (c) C solo (a) e (b) D nessuna E solo (c) F solo (a) Quesito n. 15 $11 \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale
Quesito n. 15 Il $\lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1+x^4}}$ vale
$A + \infty$ $B \frac{1}{2}$ C non esiste D 2 E 0 F $\sqrt{2}$
Quesito n. 16 Quanto vale il limite $\lim_{x\to +\infty} x \ln\left(1+\frac{1}{x+3}\right)$?
$A + \infty$ $B e^3$ $C 1$ D non esiste $E 3$ $F 0$ A = 0 $B = 0$ B
(a) A è sempre un intervallo; (b) A non ha mai punti isolati;
(b) A non na mai punti solati; (c) il complementare di A è sempre chiuso. Allora:
A (a), (b) e (c) sono tutte false 2 affermazioni sono vere ed una è falsa (b) è vera e (a) e (c) sono false (c) è vera e (a) e (b) sono false (a) è vera e (b) e (c)
sono false E (a), (b) e (c) sono tutte vere

Compito n.42	${\bf Cognome: \dots \dots}$		Nome	:		Matr:
n.1 n.2 n.3 A A A A B B B B C C C C D D D D E E E E F F F	n.4 n.5 n.6 A A A B B B B C C C C D D D E E E E F F F	n.7 n.8 n.9 A A A B B B C C C D D D E E E F F F	n.10 n.11 n.12 A A A B B B C C C D D D E E E F F F	n.13 n.14 n.15 A A A B B B B C C C C D D D E E E F F F	n.16 n.17 A A B B C C D D E E F	

```
Quesito n. 1 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette:
     (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
     (d) a_n = o(b_n)
 oxed{A} solo (c) oxed{B} solo (a), (b) e (c) oxed{C} solo (c) e (d) oxed{D} nessuna oxed{E} solo (d) oxed{F} solo (b) e (c)
 Quesito n. 2 Si considerino le affermazioni:
  (a) \tan x - \sin x = o(x) per x \to 0;
  (b) \sin x = o(x) \text{ per } x \to 0;
  (c) \sin x \approx \tan x per x \to 0.
Allora quelle vere sono:
 A solo (a) B solo (a) e (c) C solo (c) D solo (b) E nessuna F tutte
 Quesito n. 3 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
 Quesito n. 4 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) per n \to +\infty;
 (b) a_n = o\left(n^2\right) \text{ per } n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono:
 A solo (a) e (c) B tutte C solo (c) D solo (a) E solo (a) e (b) F nessuna
 Quesito n. 5 Sia A=(-\infty,0)\cup\left\{2^{-n}\mid n\in\mathbf{N}\right\}. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A;
 (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
Allora quelle vere sono:
 A nessuna B tutte C solo (a) D solo (a) e (b) E solo (b) F solo (a) e (c)
 Quesito n. 7 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
 \frac{ \begin{bmatrix} \underline{\mathbf{A}} & \frac{1}{(x^2 + x) \ln^2 \left( 1 + \frac{1}{x} \right)} & \underline{\mathbf{B}} & 1 + \frac{1}{x} & \underline{\mathbf{C}} & \frac{-x}{(x+1) \ln^2 \left( 1 + \frac{1}{x} \right)} & \underline{\mathbf{D}} - \frac{1}{x^2} - \frac{1}{x^3} & \underline{\mathbf{E}} - \frac{1}{x^2} \ln \left( 1 + \frac{1}{x} \right) & \underline{\mathbf{F}} & \frac{1}{x^2 \ln^2 \left( 1 + \frac{1}{x} \right)} \\ \underline{\mathbf{Quesito n. 8 }} & \underline{\mathbf{B}} & \lim_{x \to 0} \frac{\sqrt{1 + x^2} - \cos x}{\ln \left( 1 + 2x^2 \right)} & \text{è uguale a:} 
 A_{-1} B_3 C_{-\infty} D_{\frac{1}{2}} E_{\frac{3}{4}} F_{\frac{1}{4}}
 Quesito n. 9 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
  \boxed{ \underline{\mathbf{A}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = 
 Quesito n. 10 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
A_{+\infty} B_{\sqrt{2}} C_0 D_2 E_{\text{non esiste}} F_{\frac{1}{2}}
 Quesito n. 12 \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
 A_0 B \frac{1}{2} C_1 D - \frac{1}{2} E + \infty F - 1
 Quesito n. 13 Il \lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{(1 - \cos \frac{3}{n})} è uguale a:
 A = \frac{1}{6} = \frac{1}{3} = C + \infty D_1 = 0 = \frac{2}{3}
 Quesito n. 14 \lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2n]{n!}+5n} è uguale a:
 A = \frac{2}{5} B_0 C_{\frac{7}{3}} D_{\frac{2}{3}} E_{+\infty} F_{\frac{7}{5}}
 Quesito n. 15 Sia C un sottoinsieme non vuoto di \mathbf R. Si considerino le affermazioni:

 (a) se C è chiuso e limitato allora è anche compatto;

  (b) se C è chiuso allora ogni successione (a_n) \subset C converge;
  (c) se C è chiuso allora anche il suo complementare è chiuso. Allora:
 (a), (b) e (c) sono tutte false (a), (b) e (c) sono tutte vere (b) e (c) sono false (a) e (c) sono false (b) 2 affermazioni sono vere ed una è falsa (a) è vera e (b) e (c)
 sono false F (c) è vera e (a) e (b) sono false
 Quesito n. 16 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{x}\right)?
 A 1 B non esiste C 3 D 0 E e^3 F +\infty
 Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha:
  \boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ \square } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b_n) \ e \ b
 Compito n.43 Cognome: . . .
                                                                                                                                                                                                                                                     ...... Matr: .....
                                                                                                                                      n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
                                                                                                                                                                                   B B C C D D E E E
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
  Compito n.44 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                     Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Quesito n. 1 Il \lim_{n \to +\infty} n \left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a
 A = \frac{1}{3} B = \frac{2}{3} C = \frac{1}{6} D_1 E_{+\infty} F_0
 Quesito n. 2 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni (a) 1 è un punto di accumulazione per A;
   (b) 1 è un punto di frontiera per A;
   (c) 1 è un punto interno per A.
  Allora quelle vere sono:
 A nessuna B solo (a) e (b) C solo (a) D solo (c) E solo (b) F solo (a) e (c)
 Quesito n. 3 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
 A solo (a) e (c) B solo (a) C solo (c) D tutte E solo (a) e (b) F nessuna
 Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
  \boxed{ \triangle } \ a_n = o(c_n) \ \ \mathbf{e} \ c_n = o(b_n) \ \ \mathbf{E} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \mathbf{E} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \ \mathbf{E} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \ \mathbf{E} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{e} \ 
 Quesito n. 5 Il \lim_{x \to a} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
 A - \frac{1}{2} B - 1 C + \infty D \frac{3}{2} E_0 F_1
 Quesito n. 6 \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} \quad \text{è uguale a:}
 A \frac{7}{5} B_0 C_{+\infty} D \frac{2}{5} E \frac{7}{3} F \frac{2}{3}
 Quesito n. 7 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)?
 oxed{A} e^3 \quad oxed{B} \quad 3 \quad oxed{C} + \infty \quad oxed{D} \quad 0 \quad oxed{E} \quad 1 \quad oxed{F} \quad \text{non esiste}
 Quesito n. 9 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
 \frac{ \begin{bmatrix} \underline{\mathbf{A}} \end{bmatrix} \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \underline{\mathbf{B}} \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \underline{\mathbf{C}} \quad \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \underline{\mathbf{D}} \quad \frac{1}{\sqrt{3\sqrt{x}}} \quad \underline{\mathbf{E}} \quad \frac{1}{\sqrt{6\sqrt{x}}} \quad \underline{\mathbf{F}} - \frac{1}{2\sqrt{1+x\sqrt{x}}} }{\mathbf{Quesito n. 10}} \quad \mathbf{B} \quad \mathbf{B} \quad \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \mathbf{B} \quad
 A 2 B \frac{1}{2} C non esiste D \sqrt{2} E 0 F +\infty
 Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si ha:
 Quesito n. 12 Date a_n = \frac{1}{n + (-1)^n} e b_n = \frac{1}{n + \sin n}. Dire quali delle seguenti affermazioni sono corrette:
     (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
 Quesito n. 13 Il \lim_{n \to +\infty} \left(1 + \frac{e}{n+2}\right)^n è uguale a
 f A e^e \quad f B \sqrt{e} \quad f C + \infty \quad f D e^2 \quad f E e \quad f F 1
  Quesito n. 14 Si considerino le affermazioni:
   (a) sin x − x = o (x) per x → 0;
  (b) \sin x \approx x \text{ per } x \to 0;
 (c) \frac{\sin x}{} \to 0 per x \to +\infty
 Allora quelle vere sono:
 A tutte B solo (a) C nessuna D solo (c) E solo (b) F solo (a) e (c)
 Quesito n. 15 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{e^x-1}
 A + \infty B non esiste C - 1 D - \infty E 1 F 0
  Quesito n. 16 Sia C un sottoinsieme non vuoto di {\bf R}. Si considerino le affermazioni
   (a) se C è chiuso allora è anche limitato;
   (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
   (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C.
 🖺 2 affermazioni sono vere ed una è falsa 🖺 (c) è vera e (a) e (b) sono false 🖸 (b) è vera e (a) e (c) sono false 🗓 (a) è vera e (b) e (c) sono false 🖺 (a), (b) e (c) sono
 tutte false F(\mathbf{a}), F(\mathbf{b}) = F(\mathbf{c}) sono tutte vere
 Quesito n. 17 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
 A non esiste in \mathbb{R}^* B 1 \mathbb{C}_{+\infty} D -\infty E \frac{1}{2} F 0
 | n.10 | n.11 | n.12 | A | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F | F |
                                                                                                  n.7 n.8 n.9
A A A
B B B B
C C C
D D D
E E E E
F F F
                                                                                                                                                                                                         | n.13 | n.14 | n.15 | A | A | A | A | B | B | B | C | C | C | D | D | D | D |
                                                   n.4 n.5 n.6
A A A
B B B B
C C C
D D D
   n.1 n.2 n.3
A A A B
B B B
C C C
D D D
```

```
Compito n.45 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 II \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
\blacksquare non esiste in \blacksquare* \blacksquare 2 \square \frac{1}{2} \square \frac{3}{2} \blacksquare 0 \blacksquare +\infty
 \boxed{ \textcolor{red}{\mathbf{A}} \left( \ln x \right)^{2 \ln x} \quad \boxed{\mathbf{B}} \ x^2 \ln^2 x \quad \boxed{\mathbf{C}} \ 2x \ln x \quad \boxed{\mathbf{D}} \ 2x^2 \ln |x| \quad \boxed{\mathbf{E}} \ \left( \ln x^2 \right)^{\ln x^2} \quad \boxed{\mathbf{F}} \ \left( \ln^2 x \right)^{\ln^2 x} } 
Quesito n. 3 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)(e^x-1)}{\ln(1+\pi^2)}
A non esiste B 1 C +\infty D -1 E -\infty F 0
Quesito n. 4 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni:
  (a) in ogni caso C è compatto;
  (b) in ogni caso C contiene tutti i suoi punti di accumulazione:
  (c) in ogni caso C non ha punti interni.
una è falsa F (c) è vera e (a) e (b) sono false
Quesito n. 5 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
\overline{A} solo (b) e (c) \overline{B} solo (a), (b) e (c) \overline{C} nessuna \overline{D} solo (c) e (d) \overline{E} solo (c) \overline{F} solo (d)
  Quesito n. 6 Sia A = \mathbf{R} - \{\sqrt{2}\}. Si considerino le affermazioni:

(a) √2 appartiene alla chiusura di A;
(b) 0 è un punto di accumulazione per A;

  (c) \sqrt{2} è un punto interno per A.
  Allora quelle vere sono:
A solo (b) B tutte C solo (a) D solo (a) e (c) E solo (a) e (b) F nessuna
Quesito n. 7 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) per n \to +\infty;
(b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
A solo (a) B nessuna C solo (a) e (c) D solo (a) e (b) E solo (c) F tutte
Quesito n. 8 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
\boxed{A} \frac{1}{6} \boxed{B}_1 \boxed{C} \frac{1}{3} \boxed{D}_0 \boxed{E}_{+\infty} \boxed{F} \frac{2}{3}
Quesito n. 9 Si considerino le affermazioni:
 (a) \tan x - \sin x = o(x) per x \to 0;

(b) \sin x = o(x) per x \to 0;
 (c) \sin x \approx \tan x \text{ per } x \to 0.
 Allora quelle vere sono:
A tutte B solo (b) C nessuna D solo (a) e (c) E solo (c) F solo (a)
Quesito n. 10 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
 \boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \
Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha:
 \boxed{ \triangle } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \ \ \boxed{ E } \ c_n = o(a_n) \ \ e \ b_n = o(a_n) \ \ \boxed{ C } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \ \ \boxed{ E } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \ \ \boxed{ E } \ a_n = o(c_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ a_n = o(a_n) \ \ \boxed{ E } \ 
Quesito n. 12 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
A = \frac{1}{2} B_0 C + \infty D - 1 E - \frac{1}{2} F_1
Quesito n. 13 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
\boxed{\mathbf{A}} - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \quad \boxed{\mathbf{B}} \quad \frac{1}{x^2 - x^2 \ln^2 x} \quad \boxed{\mathbf{C}} - \frac{1}{x + x \ln^2 x} \quad \boxed{\mathbf{D}} \quad \frac{1}{x + x \ln^2 \frac{1}{x}} \quad \boxed{\mathbf{E}} \quad \frac{1}{1 + \ln^2 \frac{1}{x}} \quad \boxed{\mathbf{F}} \quad \frac{1}{1 - \ln^2 x} = \frac{1}{1 + \ln^2 \frac{1}{x}} = \frac{1}{1 + \ln^2 \frac{1}{
Quesito n. 14 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a
Quesito n. 15 Il \lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
A\sqrt{2} B_0 C_{\text{non esiste}} D\frac{1}{2} E_2 F_{+\infty}
                                                            \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}
Quesito n. 16
                                                                                                                                                                                    è uguale a:
\mathbb{A} \frac{2}{3} \mathbb{B}_0 \mathbb{C} \frac{7}{3} \mathbb{D} \frac{2}{5} \mathbb{E}_{+\infty} \mathbb{F} \frac{7}{5}
 Quesito n. 17 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{x^2}\right)?
A 1 B 3 C non esiste D e^3 E 0 F +\infty
Compito n.45 Cognome: . . .
                                                                                                                                                                              | n.13 | n.14 | n.15 | A | A | A | A | B | B | B | B | C | C | C | D | D | D | D |
                                                                                                                                     B B C C D D
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.46 del test di preselezione per il I esonero
                                                                                                                                                                                                  Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 II \lim_{n\to+\infty} \left(1+\frac{1}{en}\right)
                                                                 è uguale a:
Quesito n. 2 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
A - \infty B_1 C_0 D_{+\infty} E non esiste F_{-1}
Quesito n. 3 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
A non esiste in \mathbb{R}^* B 0 \mathbb{C}_{-\infty} D 1 \mathbb{E}_{\frac{1}{2}} \mathbb{F}_{+\infty}
Quesito n. 4 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x)
 \boxed{ \boxed{ \underline{\mathbf{A}} } \frac{-x}{(x+1)\ln^2\left(1+\frac{1}{x}\right) } } \quad \boxed{ \boxed{ \underline{\mathbf{B}} } \ 1+\frac{1}{x} } \quad \boxed{ \underline{\mathbf{C}} } -\frac{1}{x^2} -\frac{1}{x^3} \quad \boxed{ \underline{\mathbf{D}} } -\frac{1}{x^2}\ln\left(1+\frac{1}{x}\right) \quad \boxed{ \underline{\mathbf{E}} } \frac{1}{x^2\ln^2\left(1+\frac{1}{x}\right) } \quad \boxed{ \underline{\mathbf{F}} } \frac{1}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)} 
 Quesito n. 5 Sia A un sottoinsieme aperto e non vuoto di {\bf R}. Si consid
 (a) A è sempre un intervallo;
 (b) A non ha mai punti isolati;
(c) il complementare di A è sempre chiuso.
 Allora:
A (a) è vera e (b) e (c) sono false (b) e (c) sono false (c) è vera e (a) e (b) sono false (c) affermazioni sono vere ed una è falsa (d) (a), (b) e (c) sono tutte vere (d) e (c) sono tutte false (e) è vera e (a) e (c) sono false
Quesito n. 6 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
 \boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) 
Quesito n. 7 Il \lim_{n \to +\infty} n \left( e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right) è uguale a:
A = \frac{2}{3} B = \frac{1}{3} C_0 D_{+\infty} E_1 E_1
Quesito n. 8 Si considerino le affermazioni
(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;
(c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
Allora quelle vere sono:
A solo (a) B nessuna C solo (a) e (c) D solo (b) E solo (c) F tutte
Quesito n. 9 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)?
A 3 B 0 C e^3 D non esiste E +\infty F 1
Quesito n. 10 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + x} \right) vale
A = \frac{1}{2} B_1 C = 1 D = \frac{1}{2} E_0 F + \infty
Quesito n. 11 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni
(a) a_n = o(n^4) \text{ per } n \to +\infty;
(b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
Allora quelle vere sono:
A solo (a) e (c) B nessuna C solo (a) e (b) D solo (a) E tutte F solo (c)
Quesito n. 12 \lim_{n\to+\infty} \frac{7 \ln(n+e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n} è uguale a:
 \boxed{\textbf{A}} \ x^2 \ln^2 x \quad \boxed{\textbf{B}} \ (\ln x^2)^{\ln x^2} \quad \boxed{\textbf{C}} \ 2x \ln x \quad \boxed{\textbf{D}} \ 2x^2 \ln |x| \quad \boxed{\textbf{E}} \ (\ln^2 x)^{\ln^2 x} \quad \boxed{\textbf{F}} \ (\ln x)^{2 \ln x} 
Quesito n. 14 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette:
  (a) a_n \approx b_n \text{ per } n \to +\infty;
  (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
  (c) a_n = O(b_n)
  (d) a_n = o(b_n)
oxed{A} solo (b) e (c) oxed{B} solo (c) e (d) oxed{C} solo (d) oxed{D} solo (c) oxed{E} solo (a), (b) e (c) oxed{F} nessuna
Quesito n. 15 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}} vale
A non esiste \mathbb{B}_2 \mathbb{C}\sqrt{2} \mathbb{D}_{+\infty} \mathbb{E}\frac{1}{2} \mathbb{F}_0
Quesito n. 16 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni:
 (a) 1 è un punto di accumulazione per A;
 (b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A.
Allora quelle vere sono:
A solo (a) e (c) B solo (a) C solo (b) D solo (a) e (b) E nessuna F solo (c)
Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n^{100}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) 
                                                                                                                              ..... Matr:....
n.1 n.2 n.3
A A A A
B B B B
C C C C
D D D
                                                                           n.10 n.11 n.12
A A A
B B B B
C C C
D D D
                        n.4 n.5 n.6
A A A
B B B B
C C C
D D D
                                                 n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
                                                                                                   n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
                                                                                                                            B B C C D D
```

```
Compito n.47 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                        Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1+\frac{1}{x+3}\right)?
A_0 B_{-1} C_1 D_{-\frac{1}{2}} E_{+\infty} F_{\frac{1}{2}}
 Quesito n. 3 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
E e^{\frac{x}{\sqrt{2+x^2}}} F 2xe^{\sqrt{2+x^2}}
Quesito n. 4 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}
A + \infty B \cdot 1 C \cdot non \cdot esiste  <math>D - \infty E - 1 F \cdot 0
Quesito n. 5 \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} è uguale a:
A_0 B_{\frac{7}{2}} C_{\frac{2}{5}} D_{\frac{2}{2}} E_{\frac{7}{5}} F_{+\infty}
Quesito n. 6 Il \lim_{n \to +\infty} n\left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a:
A + \infty B = \frac{1}{3} C = \frac{2}{3} D_1 E_0 F = \frac{1}{6}
Quesito n. 7 Il \lim_{n \to +\infty} \left(1 + \frac{\pi}{n^2}\right)^{en} è uguale a:
oxed{A} + \infty \quad oxed{B} \, e^{\pi} \quad oxed{C} \, e^2 \quad oxed{D} \, e^{e\pi} \quad oxed{E} \, e^{e+\pi} \quad oxed{F} \, 1
Quesito n. 8 Si considerino le affermazioni:
  (a) \sin x - x = o(x) per x \to 0;
 (b) \sin x \approx x \text{ per } x \to 0;
(c) \frac{\sin x}{\cos x} \to 0 \text{ per } x \to +\infty
Allora quelle vere sono:
oxed{A} solo (a) e (c) oxed{B} solo (c) oxed{C} tutte oxed{D} solo (a) oxed{E} nessuna oxed{F} solo (b)
Quesito n. 9 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
(a) a_n = o(n^4) per n \to +\infty;
(b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
Allora quelle vere sono:
A tutte B solo (a) C solo (c) D nessuna E solo (a) e (c) F solo (a) e (b)
Quesito n. 10 Date a_n = \frac{3}{n} e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
oxed{A} solo (a), (b) e (c) oxed{B} solo (c) e (d) oxed{C} solo (c) oxed{D} nessuna oxed{E} solo (b) e (c) oxed{F} solo (d)
Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n\sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
 \boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \\ \boxed{ \textbf{D} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \\ \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n)   \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) 
Quesito n. 12 Il \lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}} vale
A = \frac{1}{2} B \sqrt{2} C + \infty D_0 E_2 F non esiste
Quesito n. 13 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si has
 \boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e} \ b_n = o
Quesito n. 14 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ g \circ h è uguale a
Quesito n. 15 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
A = \frac{2}{5} B_0 C - \frac{1}{5} D \frac{1}{5} E - \frac{2}{5} F + \infty
Quesito n. 16 Sia C un sottoinsieme chiuso e non vuoto di {\bf R}. Si considerino le affermazioni
  (a) il complementare di C è sempre aperto;
  (b) in ogni caso C contiene la sua frontiera;
  (c) C può avere punti isolati.
  Allora:
A (a), (b) e (c) sono tutte false (b) (c) è vera e (a) e (b) sono false (a), (b) e (c) sono tutte vere 2 2 affermazioni sono vere ed una è falsa (b) è vera e (a) e (c)
sono false F (a) è vera e (b) e (c) sono false
Quesito n. 17 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni

 (a) √2 appartiene alla chiusura di A;

  (b) 0 è un punto di accumulazione per A;
(c) \sqrt{2} è un punto interno per A. Allora quelle vere sono:
A tutte B solo (a) e (c) C solo (a) D solo (b) E solo (a) e (b) F nessuna
n.7 n.8 n.9
A A A A
B B B B
C C C C
D D D D
E E E E
F F F
                                                                                                                                                                         B B B C C C C D D D D
                                                                                                                              n.1 n.2 n.3
A A A B
B B B
C C C
D D D
                                          n.4 n.5 n.6
A A A B
B B B
C C C
D D D
```

```
Quesito n. 1 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
      (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
      (\mathbf{c}) \ a_n = O\left(b_n\right)
     (d) a_n = o(b_n)
 oxed{\mathbb{A}} solo (c) oxed{\mathbb{B}} solo (a), (b) e (c) oxed{\mathbb{C}} solo (c) e (d) oxed{\mathbb{D}} nessuna oxed{\mathbb{E}} solo (b) e (c) oxed{\mathbb{F}} solo (d)
  Quesito n. 2 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:
   (a) 0 è un punto di accumulazione per A;
  (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
   Allora quelle vere sono:
 A nessuna B solo (b) C solo (a) e (b) D tutte E solo (a) F solo (a) e (c)
  Quesito n. 3 Sia A un sottoinsieme non vuoto di \mathbf{R}. Quali, tra le seguenti affermazioni, sono vere? (a) se A è aperto allora la sua frontiera è vuota;
   (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
  (\mathbf{c}) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
 A solo (c) B nessuna C solo (b) e (c) D solo (b) E tutte F solo (a)
                                                                            \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5 n^{\ln n}} \quad \text{è uguale a:}
 \mathbb{A} \frac{2}{3} \mathbb{B} \frac{2}{5} \mathbb{C}_{+\infty} \mathbb{D}_0 \mathbb{E} \frac{7}{5} \mathbb{F} \frac{7}{3}
 Quesito n. 5 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
 A_{-1} B_{-\infty} C_0 D_1 E_{non esiste} F_{+\infty}
 Quesito n. 6 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
 A_{+\infty} B_{\frac{1}{2}} C_{\frac{2}{3}} D_1 E_0 F_{\frac{1}{6}}
 Quesito n. 7 Date le successioni (a_n), (b_n) e (c_n) definite da a_n=2^n\ln n, b_n=n^5\ln n e c_n=2^n, si ha:
  \boxed{ \boxed{ \textbf{A}} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \boxed{ \textbf{E}} } \ c_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \boxed{ \textbf{E}} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \boxed{ \textbf{E}} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} 
 Quesito n. 8 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
 A = \frac{1}{2} B = 1 C 1 D + \infty E 0 F \frac{1}{2}
  Quesito n. 9 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
 A 3 B non esiste C 1 D e^3 E 0 F +\infty
 Quesito n. 10 Il \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
 A_2 B_{\frac{2}{3}} C_8 D_{\frac{8}{3}} E_4 F_{\frac{4}{3}}
 Quesito n. 11 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
  (c) (a_n) è una successione crescente.
   Allora quelle vere sono:
 A solo (c) B solo (a) C tutte D nessuna E solo (a) e (c) F solo (a) e (b)
 Quesito n. 12 II \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
 A \sqrt{e} B e^2 C e^e D 1 E e F + \infty
 Quesito n. 13 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
 Quesito n. 14 Si considerino le affermazioni:
  (a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;
   (c) e^x - 1 = x + o(x) \text{ per } x \to +\infty.
   Allora quelle vere sono:
 A nessuna B solo (c) C solo (b) e (c) D solo (a) E solo (b) F solo (a) e (c)
  Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
  \boxed{ \triangle } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ C } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ D } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ E } \ c_n = o(b
 Quesito n. 16 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
 A non esiste \mathbb{B}\sqrt{2} \mathbb{C} 0 \mathbb{D}+\infty \mathbb{E}\frac{1}{2} \mathbb{F} 2
 Quesito n. 17 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
 \boxed{ \textcolor{red}{\mathbf{A}} \, \frac{1}{x + x \ln^2 \frac{1}{x}} } \quad \boxed{ \textcolor{red}{\mathbf{B}} \, - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} } \quad \boxed{ \textcolor{red}{\mathbf{C}} \, \frac{1}{1 - \ln^2 x}} \quad \boxed{ \textcolor{red}{\mathbf{D}} \, \frac{1}{x^2 - x^2 \ln^2 x}} \quad \boxed{ \textcolor{red}{\mathbf{E}} \, \frac{1}{1 + \ln^2 \frac{1}{x}}} \quad \boxed{ \textcolor{red}{\mathbf{F}} \, - \frac{1}{x + x \ln^2 x}} 
                                                                                                                                          | No. 10 | N
                                                                                                                                                                                                                | n.10 | n.11 | n.12 |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
| F | F | F |
                                                                                                                                                                                                                                                                                    | N.14 | N.15 | N.16 | 
                                                                     | N.4 | N.5 | N.6 |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.49 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Quesito n. 1 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right) vale
 A + \infty B - \frac{1}{2} C_1 D_0 E_{-1} F = \frac{1}{2}
 Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^{n^2}, b_n = 3^n e c_n = 2^n, si ha
  \boxed{ \triangle } \ a_n = o(b_n) \ e \ b_n = o(c_n) \ \boxed{ E} \ b_n = o(a_n) \ e \ a_n = o(b_n) \ \boxed{ C} \ a_n = o(b_n) \ \boxed{ E} \ b_n = o(a_n) \ e \ c_n = o(b_n) \ \boxed{ E} \ c_n = o(a_n) \ \boxed{ E} \ c_n = o(a_n) \ \boxed{ E} \ c_n = o(b_n) \ \boxed{ E} \
 Quesito n. 3 \lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}
 A = \frac{2}{5} B = \frac{7}{5} C_0 D_{+\infty} E = \frac{7}{3} F = \frac{2}{3}
 Quesito n. 4 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
 A\sqrt{2} B_2 C_0 D non esiste E\frac{1}{2} F+\infty
Quesito n. 5 II \lim_{n\to+\infty} \left(1+\frac{1}{en}\right)^{n+\pi} è uguale a:
 Quesito n. 6 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x)
 \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ a_n = o(c_n) \ \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{C} } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{D} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ b
 Quesito n. 8 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
 \overline{A} solo (a), (b) e (c) \overline{B} nessuna \overline{C} solo (b) e (c) \overline{D} solo (d) \overline{E} solo (c) \overline{F} solo (c) e (d)
 Quesito n. 9 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)?
 oxed{A} \ 0 \ \ oxed{B} \ e^3 \ \ oxed{C} \ 3 \ \ oxed{D} \ 1 \ \ oxed{E} \ \text{non esiste} \ \ oxed{F} + \infty
 Quesito n. 10 Sia C un sottoinsieme non vuoto di \mathbf R. Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
  (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C
  Allora:
 A (b) è vera e (a) e (c) sono false B (a) è vera e (b) e (c) sono false C (a), (b) e (c) sono tutte vere D (a), (b) e (c) sono tutte false E 2 affermazioni sono vere ed
 una è falsa \boxed{\mathbf{F}} (c) è vera e (a) e (b) sono false
                                                                                                                                              per n pari,
per n dispari.
                                                                                                                                                                                        Si considerino le affermazioni
  Quesito n. 11 Per ognin \in \mathbf{N} definiamo a_n =
  (a) a_n = o(n^4) \text{ per } n \to +\infty;
  (b) a_n = o(n^2) per n \to +\infty
  (c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
 A solo (a) e (b) B solo (a) e (c) C solo (c) D nessuna E solo (a) F tutte
 Quesito n. 12 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
 f A 1 \f B +\infty \f C non esiste \f D -1 \f E 3 \f F 0
 Quesito n. 13 Si considerino le affermazioni:
  (a) \tan x - \sin x = o(x) \text{ per } x \to 0;
(b) \sin x = o(x) \text{ per } x \to 0;
  (c) \sin x \approx \tan x \text{ per } x \to 0.
  Allora quelle vere sono:
 A solo (b) B tutte C solo (c) D nessuna E solo (a) e (c) F solo (a)
  Quesito n. 14 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 Quesito n. 15 Sia A = \mathbf{R} - \{\sqrt{2}\}. Si considerino le affermazioni
  (a) \sqrt{2} appartiene alla chiusura di A;
  (b) 0 è un punto di accumulazione per A;
  (c) \sqrt{2} è un punto interno per A.
  Allora quelle vere sono
 A nessuna B tutte C solo (a) e (c) D solo (a) E solo (b) F solo (a) e (b)
 Quesito n. 16 II \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)} è uguale a:
\boxed{A} \frac{1}{4} \boxed{B} \frac{3}{4} \boxed{C} - \infty \boxed{D} 3 \boxed{E} - 1 \boxed{F} \frac{1}{2}
 Quesito n. 17 Il \lim_{n \to +\infty} n \left( e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right) è uguale a:
 A_0 B_{\frac{2}{3}} C_1 D_{\frac{1}{3}} E_{+\infty} F_{\frac{1}{6}}
 Compito n.49 Cognome: Nome: Matr: ....
                                                                                                                                                                                n.13 n.14
A A
B B
C C
D D
E E
F F
                                                                                                                                                 B B C C D D
                                                                                                                   A
B
C
D
                                                                                         А
В
С
Б
Е
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.50 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
A_0 \quad B \stackrel{1}{=} \quad C \stackrel{1}{=} \quad D_1 \quad E_{+\infty} \quad F \stackrel{2}{=} \quad C \stackrel{1}{=} \quad C \stackrel{1}{
 Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[5]{n} e c_n = \ln n, si ha:
  \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{C} } \ b_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \mathbf{D} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ c
 Quesito n. 3 Si considerino le affermazioni:
   (a) \sin x - x = o(x) per x \to 0:
   (b) \sin x \approx x \text{ per } x \to 0;
 (c) \frac{\sin x}{x} \to 0 \text{ per } x \to +\infty
 Allora quelle vere sono:
 A tutte B solo (c) C solo (a) D nessuna E solo (b) F solo (a) e (c)
  Quesito n. 4 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
 Quesito n. 5 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
 A_0 B_{-1} C_{-\frac{1}{2}} D_1 E_{+\infty} F_{\frac{3}{2}}
 (a) in ogni caso C è compatto;
   (b) in ogni caso C contiene tutti i suoi punti di accumulazione:
  (c) in ogni caso C non ha punti interni.
 (a) (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte false (a) (b) è vera e (b) e (c) sono false (b) (c) è vera e (a) e (b) sono false (a), (b) e (c) sono tutte
 vere F 2 affermazioni sono vere ed una è falsa
 Quesito n. 7 Date a_n = \frac{1}{n + (-1)^n} e b_n = \frac{1}{n + \sin n}. Dire quali delle seguenti affermazioni sono corrette:
      (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo}
      (c) a_n = O(b_n)
      (d) a_n = o(b_n)
 oxed{\mathbb{A}} solo (b) e (c) oxed{\mathbb{B}} solo (c) e (d) oxed{\mathbb{C}} solo (a), (b) e (c) oxed{\mathbb{D}} solo (c) oxed{\mathbb{E}} solo (d) oxed{\mathbb{F}} nessuna
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
  \boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ c_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf
 Quesito n. 9 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n\in\mathbb{N}} a_n = +\infty;
 (b) \lim_{n \to \infty} a_n = +\infty;
  (c) (a_n) è una successione crescente.
  Allora quelle vere sono:
 A solo (a) B solo (a) e (b) C solo (a) e (c) D tutte E solo (c) F nessuna
 Quesito n. 10 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
 \boxed{ \boxed{A} - \frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{B} - \frac{1}{x^2} \ln \left( 1 + \frac{1}{x} \right) \quad \boxed{C} \quad \frac{-x}{(x+1) \ln^2 \left( 1 + \frac{1}{x} \right)} \quad \boxed{D} \quad 1 + \frac{1}{x} \quad \boxed{E} \quad \frac{1}{(x^2+x) \ln^2 \left( 1 + \frac{1}{x} \right)} \quad \boxed{F} \quad \frac{1}{x^2 \ln^2 \left( 1 + \frac{1}{x} \right)} 
 Quesito n. 11 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a
 A 0 B 2 C \frac{3}{2} D non esiste in \mathbb{R}^* E +\infty F \frac{1}{2}
 Quesito n. 12 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ h \circ f è uguale a
  \boxed{ \textbf{A} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ x^2 \ln^2 x \quad \boxed{ \textbf{C} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textbf{D} } \ 2x \ln x \quad \boxed{ \textbf{E} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{F} } \left( \ln^2 x \right)^{\ln^2 x} 
 Quesito n. 13 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
 A - \infty B \ 1 C \ 0 D - 1 E + \infty F non esiste
 Quesito n. 14 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni

 (a) 1 è un punto di accumulazione per A;

  (b) 1 è un punto di frontiera per A;(c) 1 è un punto interno per A.
 A solo (a) e (c) B solo (c) C solo (a) e (b) D solo (b) E solo (a) F nessuna
 Quesito n. 15 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)?
 A + \infty B 3 C e^3 D 1 E 0 F non esiste
 Quesito n. 16 \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} è uguale a:
 A = \frac{2}{3} B_0 C_{+\infty} D = \frac{7}{\epsilon} E = \frac{2}{\epsilon} E = \frac{7}{3}
```

_ 3	
Quesito n. 17 Il $\lim_{x \to +\infty} \frac{2x \cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}}$ vale	
$\boxed{\mathbb{A}\sqrt{2}}$ $\boxed{\mathbb{B}}$ $\boxed{\mathbb{C}}$ $\boxed{\mathbb{O}}$ non esiste $\boxed{\mathbb{E}}$ $+\infty$ $\boxed{\mathbb{F}}$ $\frac{1}{2}$	
Compito n.50 Cognome:	
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 n.17 A <td< th=""><td></td></td<>	

```
Compito n.51 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                          Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Sia A = [-3, 3] \cap \mathbf{Q}. Si considerino le affermazioni
  (a) 0 è un punto interno per A;
  (b) 0 è un punto di accumulazione per A;
  (c) \sqrt{3} è un punto interno per A.
  Allora quelle vere sono:
A solo (a) e (c) B solo (a) e (b) C solo (b) D nessuna E tutte F solo (a)
Quesito n. 2 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
\overline{A} solo (c) \overline{B} nessuna \overline{C} solo (c) \overline{e} (d) \overline{D} solo (a), (b) \overline{e} (c) \overline{E} solo (b) \overline{e} (c) \overline{E} solo (d)
 Quesito n. 3 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
Quesito n. 4 Quanto vale il limite \lim_{n \to \infty} x \ln \left(1 + \frac{3}{x}\right)?
f A e^3 f B 3 f C non esiste f D 0 f E 1 f F + \infty
Quesito n. 5 Il \lim_{n \to +\infty} \left(1 + \frac{\pi}{n^2}\right)^{en} è uguale a:
Quesito n. 6 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
 \boxed{\textbf{A}} \; \frac{e^{\sqrt{2+x^2}}}{2\sqrt{2+x^2}} \quad \boxed{\textbf{B}} \; \frac{xe^{\sqrt{2+x^2}}}{\sqrt{2+x^2}} \quad \boxed{\textbf{C}} \; e^{\sqrt{2+x^2}} \quad \boxed{\textbf{D}} \; 2xe^{\sqrt{2+x^2}} \quad \boxed{\textbf{E}} \; e^{\frac{x}{\sqrt{2+x^2}}} \quad \boxed{\textbf{F}} \; 2xe^{\frac{1}{2\sqrt{2+x^2}}}
Quesito n. 7 \lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}
                                                                                                                                                                  è uguale a:
Quesito n. 8 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A 2 B non esiste C = \frac{1}{2} D \sqrt{2} E 0 F +\infty
Quesito n. 9 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) \text{ per } n \to +\infty;
 (b) a_n = o(2^n) per n \to +\infty;
(c) (a_n) è una successione crescente.
Allora quelle vere sono:
A solo (a) e (c) B nessuna C tutte D solo (c) E solo (a) F solo (a) e (b)
Quesito n. 10 II \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
A = \frac{2}{5} B = \frac{1}{5} C = \frac{2}{5} D = \frac{1}{5} E = +\infty E = 0
Quesito n. 11 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
A = \frac{1}{2} B = \frac{1}{2} C = 1 D = \infty E = 0 E = 1
Quesito n. 12 Si considerino le affermazioni:
 (a) \ln(1+x) = o(x) \text{ per } x \to 0;
 (b) \ln(1-x) = -x + o(x) \text{ per } x \to 0
(c) \ln\left(1+\frac{1}{x}\right) \approx x \text{ per } x \to +\infty.
Allora quelle vere sono:
A solo (a) B solo (b) C solo (c) D solo (a) e (c) E tutte F nessuna
Quesito n. 13 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si ha:
 \boxed{ \triangle } \ a_n = o(c_n) \ e \ c_n = o(b_n) \ e \ b_n = o(a_n) \ \ \boxed{ \bigcirc } \ b_n = o(a_n) \ e \ a_n = o(c_n) \ \ \boxed{ \bigcirc } \ a_n = o(b_n) \ e \ b_n = o(c_n) \ \ \boxed{ \bigcirc } \ b_n = o(c_n) \ \ \boxed{ \bigcirc } \ b_n = o(a_n) \ \ \boxed{ \bigcirc } \ b_n = o(b_n) \ e \ c_n = o(a_n) \ \ \boxed{ \bigcirc } \ c_n = o(a_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ \ \boxed{ \bigcirc } \ c_n = o(b_n) \ 
Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
Quesito n. 15 Il \lim_{n\to+\infty} \frac{1}{n} \left( e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right) è uguale a:
\boxed{A} \frac{1}{3} \boxed{B}_1 \boxed{C}_{+\infty} \boxed{D} \frac{2}{3} \boxed{E}_0 \boxed{F} \frac{1}{6}
Quesito n. 16 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni:

 (a) il complementare di C è sempre aperto;

  (b) in ogni caso C contiene la sua frontiera;
  (c) C può avere punti isolati.
  Allora:
(a) è vera e (b) e (c) sono false (b) e (c) sono false (c) è vera e (a) e (b) sono false (c) (a), (b) e (c) sono tutte false (c) (c) è vera e (a) e (c) sono false (c) sono false (d) è vera e (a) e (b) è vera e (b) è vera e (c) sono false (d) è vera e (d) e e (d)
una è falsa F (a), (b) e (c) sono tutte vere
Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[5]{n} e c_n = \ln n, si ha:
\boxed{ \textbf{A} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ 
Compito n.51 Cognome: .
                                                                                                                                                                         | n.13 | n.14 | n.15 | n.16 | n.17 |
| A | A | A | A | A |
| B | B | B | B |
| C | C | C | C |
| D | D | D | D |
| E | E | E | E |
| F | F | F | F |
                                                                                                              n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
F F F
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.52 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono Quesito n. 2 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale $A - \frac{1}{2} B - \frac{1}{3} C_1 D_{-1} E_{-\infty} F_0$ **Quesito n. 3** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: $\boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} }$ Quesito n. 4 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale A 2 B $\frac{1}{2}$ C non esiste D 0 E $\sqrt{2}$ F $+\infty$ Quesito n. 5 Il $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi}$ è uguale a: $A e B e^{-e+\pi} C 0 D \frac{1}{2} E e^{-\pi} F 1$ Quesito n. 6 Si considerino le affermazioni (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A solo (b) e (c) B solo (a) C nessuna D solo (a) e (b) E solo (b) F solo (c) Quesito n. 7 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A; (b) 5 appartiene alla chiusura di A; (c) 9 è un punto di accumulazione per AAllora quelle vere sono: A solo (a) e (c) B tutte C nessuna D solo (b) E solo (a) F solo (a) e (b) Quesito n. 8 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$? A 3 B e^3 C non esiste D 0 E $+\infty$ F 1 $\overline{ extbf{Quesito n. 9}}$ Sia A un sottoinsieme non vuoto di \mathbf{R} . Quali, tra le seguenti affermazioni, sono vere (a) se A è aperto allora la sua frontiera è vuota; (c) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
(c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione A tutte B nessuna C solo (b) e (c) D solo (b) E solo (a) F solo (c) Quesito n. 10 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ A = -1 B non esiste C = 1 D 0 E $-\infty$ F $+\infty$ Quesito n. 11 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a: $A \frac{7}{2} B_0 C_{+\infty} D^{\frac{2}{5}} E^{\frac{7}{5}} F^{\frac{2}{3}}$ **Quesito n. 12** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: $\boxed{\textbf{A}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{B}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{C}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{D}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{E}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{F}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{E}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n =$ Quesito n. 13 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a: $\frac{\boxed{\mathbf{A}} + \infty \quad \boxed{\mathbf{B}} \ 0 \quad \boxed{\mathbf{C}} \ \frac{1}{6} \quad \boxed{\mathbf{D}} \ \frac{1}{3} \quad \boxed{\mathbf{E}} \ 1 \quad \boxed{\mathbf{F}} \ \frac{2}{3}$ $\mathbf{Quesito} \ \mathbf{n.} \ \mathbf{14} \quad \boxed{\mathbf{II}} \quad \lim_{x \to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)} \quad \text{è uguale a:}$ A 2 B 1 $\mathbb{C}_{+\infty}$ D 0 $\mathbb{E}_{\frac{1}{2}}$ F non esiste in \mathbb{R}^* Quesito n. 15 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a Quesito n. 16 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette (a) $a_n \approx b_n \text{ per } n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 17 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x).

| N.1 | N.2 | N.3 | N.4 | N.5 | N.6 | N.7 | N.8 | N.9 | N.10 | N.11 | N.12 | N.13 | N.14 | N.15 | N.16 | N.17 | N.8 | N.9 | N.10 | N.11 | N.12 | N.13 | N.14 | N.15 | N.16 | N.17 | N.18 | N.18 | N.16 | N.17 | N.18 | N.18

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.53 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[4]{n}$ e $c_n = \ln n$, si ha: $\boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{B} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{D} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n =$ Quesito n. 2 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a Quesito n. 3 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$. Allora quelle vere sono: A tutte B solo (a) e (b) C solo (a) e (c) D nessuna E solo (c) F solo (a) Quesito n. 4 Il $\lim_{x\to+\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale A 0 B 2 C non esiste D $\frac{1}{2}$ E $+\infty$ F $\sqrt{2}$ $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} \quad \text{è uguale a:}$ Quesito n. 5 $A_{+\infty}$ $B_{\frac{7}{3}}$ $C_{\frac{7}{5}}$ D_0 $E_{\frac{2}{3}}$ $F_{\frac{2}{5}}$ Quesito n. 6 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+\dots^2)}$ $A + \infty$ B - 1 $C \cdot 1$ $D - \infty$ $E \cdot 0$ F non esiste Quesito n. 7 Il $\lim_{n\to+\infty} \left(1+\frac{1}{en}\right)^{n+\pi}$ è uguale a: Quesito **n.** 8 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}$. Dire quali delle seguenti affermazioni sono corrette (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (a), (b) e (c) $oxed{B}$ solo (b) e (c) $oxed{C}$ solo (c) $oxed{D}$ solo (c) e (d) $oxed{E}$ nessuna $oxed{F}$ solo (d) Quesito n. 9 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^n$, $b_n = 3^n$ e $c_n = 2^n$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \blacksquare } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ \square } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) = o(a_n)$ Quesito n. 10 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (b) B solo (a) C nessuna D tutte E solo (a) e (c) F solo (c) Quesito n. 11 Il $\lim_{n\to+\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right)$ è uguale a: Quesito n. 12 II $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a: $A = \frac{8}{2} B_8 C_2 D_4 E_{\frac{4}{2}} F_{\frac{2}{2}}$ Quesito n. 13 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x). $\boxed{ \triangle } \ \frac{e^{\sqrt{2+x^2}}}{2\sqrt{2+x^2}} \quad \boxed{ \boxed{ \boxed{B} }} \ 2xe^{\sqrt{2+x^2}} \quad \boxed{ \boxed{ \boxed{C} }} \ e^{\frac{x}{\sqrt{2+x^2}}} \quad \boxed{ \boxed{ \boxed{D} }} \ e^{\sqrt{2+x^2}} \quad \boxed{ \boxed{ \boxed{E} }} \ 2xe^{\frac{1}{2\sqrt{2+x^2}}} \quad \boxed{ \boxed{F} } \ \frac{xe^{\sqrt{2+x^2}}}{\sqrt{2}+x^2}$ Quesito n. 14 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+1} \right)$ vale $A_0 B_1 C_{+\infty} D_{\frac{1}{2}} E_{-\frac{1}{2}} F_{-1}$ Quesito n. 15 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni (a) 1 è un punto di accumulazione per A;
(b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (b) B solo (a) e (b) C solo (a) D solo (c) E nessuna F solo (a) e (c) Quesito n. 16 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: (a) (b) e (c) sono tutte false (a) (b) e (c) sono tutte vere (c) e (d) e (e) sono false (d) e (e) sono false (e) (d) e vera e (e) e (f) sono false (f) e (f) false F 2 affermazioni sono vere ed una è falsa Quesito n. 17 Quanto vale il limite $\lim_{x\to +\infty} x^2 \ln\left(1+\frac{3}{x}\right)$? A 0 B $+\infty$ C non esiste D e^3 E 1 F 3 Nome: Matr: n.10 n.11 n.12
A A A
B B B B
C C C C
D D D
E E E E
F F F n.7 n.8 n.9
A A A A
B B B B
C C C C
D D D
E E E E
F F F n.13 n.14 n.15 n.16 n.17 A A A A A A A A B B B C C C D D D B B B C C C D D D B B B B B C C C C C C D D D D D D D

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.54 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Si considerino le affermazioni (a) $\ln(1+x) = o(x) \text{ per } x \to 0;$ (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right) \approx x$ per $x \to +\infty$. Allora quelle vere sono: A solo (a) B nessuna C solo (c) D solo (b) E solo (a) e (c) F tutte Quesito n. 2 Date le successioni (a_n) , $(\overline{b_n})$ e (c_n) definite $\overline{a_n} = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, $\overline{s_n}$ has $\boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{D} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} \ a_n$ **Quesito n. 3** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: $\boxed{ \textcolor{red}{\mathbf{A}} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textcolor{red}{\mathbf{B}} \left(\ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textcolor{red}{\mathbf{C}} \left(\ln x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{D}} \left(2x \ln x \right)^{2 \ln^2 x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln^2 x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(2x^2 \ln x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} } \quad \boxed{ \textcolor{red}{\mathbf{E}} \left(x^2 \ln^2 x \right)^{2 \ln x} }$ Quesito n. 5 Quanto vale il limite $\lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? $oxed{A} \ 0 \ \ oxed{B} \ 1 \ \ oxed{C} \ 3 \ \ oxed{D} \ \mbox{non esiste} \ \ oxed{E} \ e^3 \ \ oxed{F} \ +\infty$ Quesito n. 6 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A \frac{1}{3} B_{+\infty} C_0 D \frac{1}{6} E_1 F \frac{2}{3}$ Quesito n. 7 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere? (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione A tutte B solo (b) C solo (c) D solo (a) E nessuna F solo (b) e (c) Quesito n. 8 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ $(\mathbf{d}) \ a_n = o\left(b_n\right)$ $oxed{\mathbb{A}}$ solo (c) e (d) $oxed{\mathbb{B}}$ solo (d) $oxed{\mathbb{C}}$ solo (b) e (c) $oxed{\mathbb{D}}$ solo (a), (b) e (c) $oxed{\mathbb{E}}$ nessuna $oxed{\mathbb{F}}$ solo (c) Quesito n. 9 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n\in\mathbb{N}} a_n = +\infty$; (b) $\lim_{n \to \infty} a_n = +\infty$; (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) e (c) B solo (a) C nessuna D tutte E solo (a) e (b) F solo (c) Quesito n. 10 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). Quesito n. 11 $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale A 1 B -1 C 0 D $-\frac{1}{2}$ E $+\infty$ F $\frac{1}{2}$ Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ $\boxed{A} \frac{2}{3} \quad \boxed{B} \frac{2}{5} \quad \boxed{C}_0 \quad \boxed{D} \frac{7}{5} \quad \boxed{E}_{+\infty} \quad \boxed{F} \frac{7}{3}$ **Quesito n. 13** Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A; (b) 5 appartiene alla chiusura di A; (c) 9 è un punto di accumulazione per AAllora quelle vere sono: A tutte B nessuna C solo (b) D solo (a) e (b) E solo (a) e (c) F solo (a) Quesito n. 14 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale $A + \infty$ B non esiste C_0 D $\sqrt{2}$ E $\frac{1}{2}$ F 2 Quesito n. 15 Calcolare $\lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}$ $A = \frac{1}{2}$ B 1 C non esiste in R^* D $+\infty$ E 2 F 0 Quesito n. 17 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e}$ è uguale a

 $A + \infty$ B e $C e^{e}$ $D \sqrt{e}$ E 1 $F \sqrt{e^{e}}$

Compito n.54 Cognome:

```
Compito n.55 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
 A e B e + 1 C + \infty D 1 E e^e F 2e^e
 Quesito n. 2 Si considerino le affermazioni:
  (a) e^x - 1 \approx x \text{ per } x \to 0;
(b) e^x - 1 = o(x) \text{ per } x \to 0;
   (c) e^x - 1 = x + o(x) per x
  Allora quelle vere sono
 A solo (c) B solo (a) e (c) C solo (a) D nessuna E solo (b) e (c) F solo (b)
  Quesito n. 3 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
oxed{A} \ 3 \quad oxed{B} \ 1 \quad oxed{C} + \infty \quad oxed{D} \ e^3 \quad oxed{E} \ 0 \quad oxed{F} \text{ non esiste}
 Quesito n. 5 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
 A 2 B \frac{1}{2} C +\infty D \sqrt{2} E non esiste F 0
 Quesito n. 6 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}.
                                                                                                                                                                                               Dire quali delle seguenti affermazioni sono corrette
      (a) a_n \approx b_n \text{ per } n \to +\infty
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
      (c) a_n = O(b_n)
      (d) a_n = o(b_n)
 oxed{A} solo (b) e (c) oxed{B} solo (c) e (d) oxed{C} nessuna oxed{D} solo (d) oxed{E} solo (a), (b) e (c) oxed{F} solo (c)
  Quesito n. 7 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:
   (a) 0 è un punto di accumulazione per A;
  (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
  Allora quelle vere sono:
 A solo (a) e (c) B solo (a) e (b) C solo (b) D nessuna E tutte F solo (a)
 Quesito n. \overline{8} Date le successioni (a_n), \overline{(b_n)} e (c_n) definite da a_n=(2n)!, b_n=(n+1)^n e c_n=n^{n+1}, si ha:
  \boxed{ \textbf{A} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{D} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ 
 Quesito n. 9 Sia C un sottoinsieme chiuso e non vuoto di {\bf R}. Si considerino le affermazioni:

(a) il complementare di C è sempre aperto;
(b) in ogni caso C contiene la sua frontiera;

   (c) C può avere punti isolati.
   Allora:
 (c) è vera e (a) e (b) sono false (b) è vera e (a) e (c) sono false (c) sono false (d) (d), (e) e (c) sono tutte false (d) 2 affermazioni sono vere ed una è falsa (d), (e) e (e) sono false (figure false) (figure fals
 tutte vere F (a) è vera e (b) e (c) sono false
 Quesito n. 10 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.
  Allora quelle vere sono:
 A solo (c) B solo (a) e (c) C tutte D nessuna E solo (a) F solo (a) e (b)
                                                                \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}è uguale a:
 Quesito n. 11
 A \frac{7}{2} B_0 C \frac{7}{\epsilon} D \frac{2}{2} E \frac{2}{\epsilon} F_{+\infty}
 Quesito n. 12 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
  \boxed{ \textbf{A} \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} } \ 2x \ln x \quad \boxed{ \textbf{C} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textbf{D} } \ x^2 \ln^2 x \quad \boxed{ \textbf{E} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{F} } \left( \ln x^2 \right)^{\ln x^2} 
 Quesito n. 13 Il \lim_{x\to 0} \frac{\sqrt{1+x^2-\cos x}}{\ln(1+2x^2)} è uguale a:
 A 3 B \frac{1}{2} C -\infty D -1 E \frac{1}{4} F \frac{3}{4}
 Quesito n. 14 \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
 A = \begin{bmatrix} 1 & B \end{bmatrix} - \begin{bmatrix} 1 & C \end{bmatrix} - \begin{bmatrix} 1 & D \end{bmatrix} - \infty E = \begin{bmatrix} 1 & E \end{bmatrix}
 Quesito n. 15 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
 A + \infty B - \infty C 0 D - 1 E non esiste F 1
 Quesito n. 16 II \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
 A + \infty B_1 C \frac{1}{3} D \frac{2}{3} E \frac{1}{6} F_0
 Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si has
  \boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \mathbf{C} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{D} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c
 n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
F F F
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.56 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                  Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
A + \infty B \frac{3}{2} C_0 D_{-1} E_{-\frac{1}{2}} F_1
Quesito n. 2 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni (a) se C è chiuso allora è anche limitato;
 (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente
 (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora:
(a) è vera e (b) e (c) sono false (b) e (c) sono false (c) è vera e (a) e (b) sono false (c) 2 affermazioni sono vere ed una è falsa (d) (e) è vera e (a) e (c) sono false (d) (e) e (c) sono
tutte false F(a), (b) e (c) sono tutte vere
Quesito n. 3 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
A = \frac{2}{3} B = \frac{1}{3} C_0 D_{+\infty} E_1 F = \frac{1}{6}
Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si has
 \boxed{ \boxed{ \boxed{A} } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ \boxed{E} } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ \boxed{C} } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \quad \boxed{ \boxed{E} } \ b_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ \boxed{E} } \ b_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ \boxed{E} } \ a_n = o(b_n) \ \ e \ b_n = o(a_n) \ \ e \ a_n = o(b_n) 
Quesito n. 5 Date a_n = \frac{1}{n + (-1)^n} e b_n = \frac{1}{n + \sin n}. Dire quali delle seguenti affermazioni sono corrette:
  (a) a_n \approx b_n \text{ per } n \to +\infty;
  (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
   (c) a_n = O(b_n)
  (d) a_n = o(b_n)
Quesito n. 6 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni:
 (a) 1 è un punto di accumulazione per A;
 (b) 1 è un punto di frontiera per A;
(c) 1 è un punto interno per A. Allora quelle vere sono:
A solo (a) e (c) B solo (a) C solo (a) e (b) D solo (c) E solo (b) F nessuna
 Quesito n. 7 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
oxed{A} \ 0 \quad oxed{B} + \infty \quad oxed{C} \ \text{non esiste} \quad oxed{D} \ e^3 \quad oxed{E} \ 3 \quad oxed{F} \ 1
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ E } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ C } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = o(a_n) \in a_n = o(a_n) \qquad \boxed{ E } \ b_n = 
Quesito n. 9 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
A - 1 B 3 C 1 D 0 E + \infty F non esiste
Quesito n. 10 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
A 2 B \frac{1}{2} C \sqrt{2} D non esiste E 0 F +\infty
Quesito n. 11 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
 \boxed{ \textbf{A} \ 3\cos^2\left(\frac{1}{x}\right) \quad \boxed{\textbf{B}} \sin^3\left(\frac{1}{x}\right) \quad \boxed{\textbf{C}} \cos^3\left(\ln x\right) \quad \boxed{\textbf{D}} \ \frac{3}{x}\cos^2\left(\ln x\right) \quad \boxed{\textbf{E}} \ \frac{3}{x}\sin^2\left(\ln x\right)\cos\left(\ln x\right) \quad \boxed{\textbf{F}} \ 3\sin^2\left(\ln x\right)\cos\left(\ln x\right) 
Quesito n. 12 Si considerino le affermazioni:
 (a) e^x - \cos x = o(x) per x \to 0;
(b) 1 - \cos x = x + o(x) per x \to 0;
 (c) e^x - \cos x \approx x \text{ per } x \to 0.
 Allora quelle vere sono:
A solo (b) B solo (c) C solo (a) e (b) D nessuna E solo (b) e (c) F solo (a)
Quesito n. 13 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
Quesito n. 14 \lim_{n\to+\infty} \frac{7n^n+2\cdot n!}{3e^{n\ln n}+5e^{\ln^2 n}} è uguale a:
\boxed{A} \frac{2}{5} \boxed{B} \frac{2}{3} \boxed{C} \frac{7}{3} \boxed{D} \frac{7}{5} \boxed{E}_0 \boxed{F}_{+\infty}
\overline{\textbf{Quesito n. 15}} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{è definita solo per} \ x > 0. \ \ \text{Allora}, \ \overline{\text{per tutti i valori di}} \ \ x \ \text{per i quali è definita}, \ g \circ f \circ h \ \text{è uguale a}
 \boxed{ \textbf{A} \, \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} \, } \, 2x^2 \ln |x| \quad \boxed{ \textbf{C} \, } \, x^2 \ln^2 x \quad \boxed{ \textbf{D} \, \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{E} \, \left( \ln x \right)^{2 \ln x} } \quad \boxed{ \textbf{F} \, } \, 2x \ln x 
Quesito n. 16 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n\in\mathbb{N}} a_n = +\infty;
(b) \lim_{n \to \infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
A solo (a) B solo (c) C tutte D solo (a) e (b) E solo (a) e (c) F nessuna
Quesito n. 17 II \lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)} è uguale a:
```

Compito n.56	Cognome:	 Nome	·		Matr:	
n.1 n.2 n.3 A A A B B B B C C C D D D E E E E F F F	~			n.16 n.17 A A B B B C C D D E E F F		

 $A + \infty$ B_1 C_0 $D_{\frac{1}{2}}$ E non esiste in R^* F_2

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.57 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 II \lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{\left(1 - \cos \frac{3}{n}\right)} è uguale a:
 A_0 = \frac{1}{6} = \frac{1}{3} = \frac{2}{3} = +\infty = 1
 Quesito n. 2 Quanto vale il limite \lim_{n \to \infty} x \ln \left(1 + \frac{3}{x^2}\right)?
 oxed{A}_1 oxed{B}_e^3 oxed{C}_0 oxed{D}_{	ext{non esiste}} oxed{E}_{+\infty} oxed{F}_3
 Quesito n. 3 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
 A_{-\infty} = A
  \boxed{ \textbf{A} \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{C} } \left( \ln x^2 \right)^{\ln x^2} \quad \boxed{ \textbf{D} } \ 2x \ln x \quad \boxed{ \textbf{E} } \ x^2 \ln^2 x \quad \boxed{ \textbf{F} } \left( \ln x \right)^{2 \ln x} 
 Quesito n. 5 II \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)} è uguale a:
 A = \frac{1}{2} B = \frac{1}{4} C = -1 D = 3 E = \frac{3}{4} E = -\infty
 Quesito n. 6 Si considerino le affermazioni:
 (a) \ln(1+x) = o(x) per x \to 0;

(b) \ln(1-x) = -x + o(x) per x \to 0
 (c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono:
 A solo (b) B solo (c) C tutte D nessuna E solo (a) F solo (a) e (c)
   Quesito n. 7 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
  \boxed{ \triangle } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \quad 
 Quesito n. 8 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
      (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell con \ell finito e non nullo;
      (c) a_n = O(b_n)
     (d) a_n = o(b_n)
 oxed{A} solo (c) oxed{B} solo (b) e (c) oxed{C} solo (d) oxed{D} solo (c) e (d) oxed{E} nessuna oxed{F} solo (a), (b) e (c)
 Quesito n. 9 \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} è uguale a:
 A_0 \to \frac{7}{5} \to +\infty D \to \frac{7}{2} \to \frac{2}{5} \to \frac{2}{5}
 Quesito n. 10 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x).
Quesito n. 11 Il \lim_{n \to +\infty} \left( 1 + \frac{1}{n+2} \right)^{n+e} è uguale a
 A e^{e} B + \infty C \sqrt{e^{e}} D_{1} E \sqrt{e} F e
 Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha:
  \boxed{ \triangle } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ \bigcirc } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ \bigcirc } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \bigcirc } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \bigcirc } \ c_n = o(a_n) \quad
 Quesito n. 13 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}
 A + \infty B = 1 C - 1 D = 0 non esiste E - \infty F = 0
  Quesito n. 14 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni:
   (a) 2 è un punto di accumulazione per A;
   (b) 5 appartiene alla chiusura di A;
   (c) 9 è un punto di accumulazione per A.
  Allora quelle vere sono:
 A nessuna B solo (a) C solo (a) e (c) D tutte E solo (a) e (b) F solo (b)
 Quesito n. 15 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni:
  (a) in ogni caso C è compatto;
   (b) in ogni caso C contiene tutti i suoi punti di accumulazione
  (c) in ogni caso C non ha punti interni. Allora:
 false F 2 affermazioni sono vere ed una è falsa
  Quesito n. 16 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni
   (a) a_n = o(n!) \text{ per } n \to +\infty;
 (b) a_n = o(2^n) per n \to +\infty;
(c) \sqrt{n} = o(a_n) per n \to +\infty.
  Allora quelle vere sono:
 A solo (a) B solo (a) e (c) C nessuna D tutte E solo (a) e (b) F solo (c)
 Quesito n. 17 Il \lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
 \boxed{A} \frac{1}{2} \boxed{B} 2 \boxed{C} + \infty \boxed{D \text{ non esiste}} \boxed{E} 0 \boxed{F} \sqrt{2}
 n.10 n.11 n.12
A A A
B B B B
C C C C
D D D D
E E E
   | N.1 | N.2 | N.3 | A | A | A | A | B | B | B | B | C | C | C | C | D | D | D | E | E | E | E |
                                                            | N.5 | N.6 | A | A | A | B | B | B | B | C | C | C | D | D | D | E | E | E | E |
                                                                                                                          n.7 n.8 n.9
A A A
B B B B
C C C
D D D
E E E E
                                                                                                                                                                                                                                                    B B C C C D D D E E E
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.58 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$? $A + \infty$ B 3 C non esiste $D e^3$ E 1 F 0Quesito n. 2 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). $\boxed{ \mathbb{A} } \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{ \mathbb{B} } \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{ \mathbb{C} } \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{D} } -\frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{E} } \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{F} } \ \frac{1}{2\sqrt{1+x\sqrt{x}}}$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite $\overline{da\ a_n = n^{100},\ b_n} = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ c_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ C } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ D } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ E } \ a_n = o(c_n) \quad \boxed{$ Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: **Quesito n. 5** Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a Quesito n. 6 Calcolare $\overline{\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}}$ $oxed{ \underline{A} }$ non esiste $oxed{ \underline{B} }$ 1 $oxed{ \underline{C} }$ + ∞ $oxed{ \underline{D} }$ - ∞ $oxed{ \underline{E} }$ -1 $oxed{ \underline{F} }$ 0 Quesito n. 7 Sia C un sottoinsieme non vuoto di $oxed{R}$. Si considerino le affermazioni (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione $(a_n) \subset C$ converge; (c) se C è chiuso allora anche il suo complementare è chiuso. (a) e (b) è vera e (a) e (c) sono false (b) e (c) sono false (c) è vera e (a) e (b) sono false (c) è vera e (a) e (b) sono false (c) a fermazioni sono vere ed una è falsa (c) e (c) sono tutte false F (a), (b) e (c) sono tutte vere Quesito n. 8 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a: A 0 B non esiste in \mathbb{R}^* $\mathbb{C}_{+\infty}$ $\mathbb{D} \frac{3}{2}$ \mathbb{E}_2 $\mathbb{F} \frac{1}{2}$ Quesito n. 9 Il $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi}$ è uguale a: $A = \frac{1}{2}$ $B = e^{-\pi}$ C = D = 0 E = 1 $E = e^{-e+\pi}$ Quesito n. 10 Si considerino le affermazioni (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty$. Allora quelle vere sono: A solo (c) B nessuna C solo (a) D tutte E solo (b) F solo (a) e (c) Quesito n. 11 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) (a_n) è una successione crescente Allora quelle vere sono: A nessuma B solo (a) C tutte D solo (c) E solo (a) e (c) F solo (a) e (b)

Quesito n. 12 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ A nessuna $B \operatorname{solo}(\mathbf{b}) \operatorname{e}(\mathbf{c})$ $C \operatorname{solo}(\mathbf{c}) \operatorname{e}(\mathbf{d})$ $D \operatorname{solo}(\mathbf{d})$ $E \operatorname{solo}(\mathbf{a}), (\mathbf{b}) \operatorname{e}(\mathbf{c})$ $E \operatorname{solo}(\mathbf{c})$ Quesito n. 13 Sia $A = [-3, 3] \cap \mathbb{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A; (b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: Quesito n. 14 $\lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2n]{n!}+5n}$ è uguale a: $A = \frac{2}{5} B + \infty$ $C = \frac{7}{3}$ $D = \frac{7}{5}$ $E_0 = \frac{2}{3}$ Quesito n. 15 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{x}e^x + x^4}$ vale $A + \infty$ $B = \frac{1}{2}$ C = 0 $D = \sqrt{2}$ E = 2 F non esiste Quesito n. 16 Il $\lim_{n\to+\infty}\frac{1}{n}\left(e^{\frac{1}{2n}}-e^{\frac{1}{3n}}\right)$ è uguale a: $A + \infty$ $B = \frac{1}{2}$ C_1 D_0 $E = \frac{1}{6}$ $F = \frac{2}{3}$ Quesito n. 17 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale $A_0 \quad B_{\frac{1}{2}} \quad C_{-1} \quad D_1 \quad E_{-\frac{1}{2}} \quad F_{+\infty}$

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.59 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$? $\boxed{\mathbb{A}_{+\infty}}$ $\boxed{\mathbb{B}_e^3}$ $\boxed{\mathbb{C}_3}$ $\boxed{\mathbb{D}_1}$ $\boxed{\mathbb{E}_0}$ $\boxed{\mathbb{F}_{\text{non esiste}}}$ **Quesito n. 2** Sia C un sottoinsieme chiuso e non vuoto di \mathbb{R} . Si considerino le affermazioni: (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: (a) è vera e (b) e (c) sono false (b) e (c) sono false (c) è vera e (a) e (b) sono false (c) (a), (b) e (c) sono tutte false (d), (b) e (c) sono tutte vere (e) è vera e (a) e (c) sono false $\overline{\mathbb{F}}$ 2 affermazioni sono vere ed una è falsa Quesito n. 3 $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a: $A = \frac{2}{3} B_0 C = \frac{7}{3} D_{+\infty} E = \frac{7}{5} F = \frac{2}{5}$ Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si has $\boxed{ \boxed{ \textbf{A}} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \boxed{ \textbf{E}} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \boxed{ \textbf{C}} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \boxed{ \textbf{D}} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \boxed{ \textbf{E}} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \boxed{ \textbf{F}} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n)$ Quesito n. 5 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$ $A_{-\infty}$ B non esiste C_0 D -1 E $_1$ F $_{+\infty}$ $\textbf{Quesito n. 6} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{\`e} \ \text{definita solo per} \ x > 0. \ \text{Allora, per tutti i valori di} \ x \ \text{per i quali \'e} \ \text{definita,} \ f \circ g \circ h \ \text{\`e} \ \text{uguale a}$ Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: $\boxed{ \boxed{\textbf{A}} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{C}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{D}} \ c_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{F}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{E}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \quad \boxed{\textbf{E}} \$ Quesito n. 8 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale $A = \frac{1}{2}$ B = 0 $C = \sqrt{2}$ $D = +\infty$ E = non esiste E = 2Quesito n. 9 Si considerino le affermazioni: (a) $e^x - \cos x = o(x)$ per $x \to 0$; (b) $1 - \cos x = x + o(x)$ per $x \to 0$; (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A solo (b) B solo (b) e (c) C solo (c) D solo (a) e (b) E solo (a) F nessuna Quesito n. 10 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale $A - \infty$ B_1 $C - \frac{1}{2}$ D_{-1} E_0 $F - \frac{1}{3}$ Quesito n. 11 Il $\lim_{n \to \infty} n\left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right)$ è uguale a: $A_{+\infty}$ B_1 $C_{\frac{2}{3}}$ $D_{\frac{1}{3}}$ $E_{\frac{1}{6}}$ F_0 Quesito n. 12 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A;(b) 5 appartiene alla chiusura di A; (c) 9 è un punto di accumulazione per A. Allora quelle vere sono: $oxed{A}$ solo (a) e (b) $oxed{B}$ nessuna $oxed{C}$ solo (a) e (c) $oxed{D}$ tutte $oxed{E}$ solo (b) $oxed{F}$ solo (a) **Quesito n. 13** Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ $(\mathbf{d}) \ a_n = o\left(b_n\right)$ $oxed{\mathbb{A}}$ solo (b) e (c) $oxed{\mathbb{B}}$ solo (c) $oxed{\mathbb{C}}$ solo (a), (b) e (c) $oxed{\mathbb{D}}$ solo (c) e (d) $oxed{\mathbb{E}}$ nessuna $oxed{\mathbb{F}}$ solo (d) Quesito n. 14 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x). Quesito n. 15 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e}$ è uguale a $A + \infty$ B_1 C_{e^e} $D_{\sqrt{e}}$ E_e $F_{\sqrt{e^e}}$ Quesito n. 16 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale as A 1 B $\frac{1}{2}$ C non esiste in \mathbb{R}^* D $-\infty$ E 0 F $+\infty$ Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; **(b)** $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n\to+\infty} a_n = +\infty$ Allora quelle vere sono: A nessuna B solo (a) e (c) C solo (a) D tutte E solo (c) F solo (a) e (b)

```
Quesito n. 1 Il \lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{\left(1 - \cos \frac{3}{n}\right)}
A_{+\infty} B\frac{1}{3} C_0 D\frac{1}{6} E_1 F\frac{2}{3}
Quesito n. 2 Sia A un sottoinsieme aperto e non vuoto di {\bf R}. Si considerino le affermazioni
  (a) A è sempre un intervallo;
  (b) A non ha mai punti isolati;
(c) il complementare di A è sempre chiuso. Allora:
(a) (b) e (c) sono tutte false (a) è vera e (b) e (c) sono false (a) e (b) e (c) sono false (a) e (b) e (c) sono false (b) è vera e (a) e (b) è vera e (b) e (b) è vera e (b) e (c) e (c) e (b) e (c) e 
false E 2 affermazioni sono vere ed una è falsa
Quesito n. 3 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n 
                                               \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}}
A_0 = \frac{2}{3} + \cdots = \frac{7}{5} = \frac{2}{5} = \frac{7}{3}
  Quesito n. 5 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:
  (a) 0 è un punto di accumulazione per A;

(b) -2 è un punto di accumulazione per A;
(c) 2<sup>-100</sup> è un punto di accumulazione per A

 Allora quelle vere sono:
A solo (a) e (c) B tutte C nessuna D solo (a) e (b) E solo (a) F solo (b)
Quesito n. 6 Si considerino le affermazioni:
(a) \ln(1+x) = o(x) \text{ per } x \to 0;

(b) \ln(1-x) = -x + o(x) \text{ per } x \to 0;
(c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono:
oxed{A} solo (b) oxed{B} solo (a) oxed{C} tutte oxed{D} solo (a) oxed{e} (c) oxed{E} solo (c) oxed{F} nessuma
Quesito n. 7 Il \lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1+x^4}} vale
A = \frac{1}{2} B 2 C 0 D non esiste E + \infty F \sqrt{2}
Quesito n. 8 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
A + \infty B e^2 C e^e D \sqrt{e} E e F 1
Quesito n. 9 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
A_0 B - \frac{1}{2} C_1 D \frac{1}{2} E - 1 F + \infty
Quesito n. 10 Quanto vale il limite \lim_{x \to a} x \ln \left(1 + \frac{3}{a^2}\right)?
A e^3 B non esiste C + \infty D 0 E 1 F 3
Quesito n. 11 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x)
Quesito n. 12 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo}
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
oxed{A} solo (b) e (c) oxed{B} solo (c) oxed{C} solo (c) e (d) oxed{D} solo (a), (b) e (c) oxed{E} nessuna oxed{F} solo (d)
Quesito n. 13 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
f A \ 0 \ \ B \ 1 \ \ C \ -\infty \ \ D \ -1 \ \ E \ non \ esiste \ \ F \ +
Quesito n. 14 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;
(b) \lim_{n \to +\infty} a_n = +\infty;
(c) (a_n) è una successione crescente.
 Allora quelle vere sono:
A solo (a) B tutte C nessuna D solo (a) e (c) E solo (a) e (b) F solo (c)
Quesito n. 15 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
A = \frac{2}{5} B = \frac{1}{5} C_0 D \frac{1}{5} E_{+\infty} F \frac{2}{5}
Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
\boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) 
Quesito n. 17 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ f \circ g è uguale a
n.10 n.11 n.12
A A A
B B B
C C C
D D D
E E E E
F F F
                                                                                                                                                                          n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
F F F
 | n.1 | n.2 | n.3 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | F | F | F | F | F |
```

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:

 $A + \infty$ $B = \frac{1}{6}$ C_0 D_1 $E = \frac{1}{3}$ $E = \frac{2}{3}$

```
Compito n.62 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) 
Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si ha:
 \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \mathbf{C} } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \mathbf{e} \ b_n = o(b_n) \ \ \mathbf{E} \ a_n = o(b_n) \ \ \mathbf{E} \ \ \mathbf{E} \ a_n = o(b_n) \ \ \mathbf{E} \ \ \mathbf{E} \ a_n = o(b_n) \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \mathbf{E}
Quesito n. 3 II \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
A + \infty B - \frac{1}{2} C_1 D \frac{3}{2} E_0 F_{-1}
Quesito n. 5 Il \lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e} è uguale a:
A \sqrt{e} B e^e C \sqrt{e^e} D e E_1 F + \infty
 Quesito n. 6 Si considerino le affermazioni:
  (a) \tan x - \sin x = o(x) per x \to 0;
  (b) \sin x = o(x) \text{ per } x \to 0;
 (c) \sin x \approx \tan x \text{ per } x \to 0
  Allora quelle vere sono:
A solo (b) B nessuna C solo (a) D solo (a) e (c) E tutte F solo (c)
Quesito n. 7 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
 Allora quelle vere sono:
A solo (a) B solo (a) e (b) C solo (c) D nessuna E tutte F solo (a) e (c)
 Quesito n. 8 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x)
 \boxed{ \textbf{A} } \, \frac{1}{x + x \ln^2 \frac{1}{x}} \quad \boxed{ \textbf{B} } \, \frac{1}{x^2 - x^2 \ln^2 x} \quad \boxed{ \textbf{C} } \, \frac{1}{1 + \ln^2 \frac{1}{x}} \quad \boxed{ \textbf{D} } \, \frac{1}{1 - \ln^2 x} \quad \boxed{ \textbf{E} } \, - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \quad \boxed{ \textbf{F} } \, - \frac{1}{x + x \ln^2 x} \, \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \quad \boxed{ \textbf{E} } \, - \frac{1}{x^2 + x^2 \ln^2 \frac{1}{x}} \, \frac{1}{x^2 \ln^2 \frac{1}{x}} \,
Quesito n. 9 Il \lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}} vale
A non esiste B + \infty C \frac{1}{2} D_2 E_0 F\sqrt{2}
Quesito n. 10 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x}
Quesito n. 11 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette:
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
Quesito n. 12 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)?
Quesito n. 13 \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} è uguale a:
\overline{A} \frac{7}{3} \overline{B} \frac{2}{5} \overline{C} \frac{7}{5} \overline{D} \frac{2}{3} \overline{E}_0 \overline{F}_{+\infty}
Quesito n. 14 Sia C un sottoinsieme non vuoto di {\bf R}. Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto;
  (b) se C è chiuso allora ogni successione (a_n) \subset C converge;
  (c) se C è chiuso allora anche il suo complementare è chiuso.
(c) è vera e (a) e (b) sono false (a) è vera e (b) e (c) sono false (b) è vera e (a) e (c) sono false (c) affermazioni sono vere ed una è falsa (c) e (c) sono
tutte vere F (a), (b) e (c) sono tutte false
Quesito n. 15 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:
  (a) 0 è un punto di accumulazione per A;
 (b) -2 è un punto di accumulazione per A;
(c) 2^{-100} è un punto di accumulazione per A
 Allora quelle vere sono:
A nessuna B solo (a) e (c) C solo (a) e (b) D solo (a) E tutte F solo (b)
Quesito n. 16 II \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
A + \infty B_1 C = \frac{1}{6} D_0 E = \frac{2}{3} E = \frac{1}{3}
Quesito n. 17 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
\boxed{A} \stackrel{3}{\stackrel{}{_{\sim}}} \boxed{B} 0 \boxed{C} + \infty \boxed{D} 2 \boxed{E} \stackrel{1}{\stackrel{}{_{\sim}}} \boxed{F} \text{ non esiste in } \mathbf{R}^*
Compito n.62 Cognome: . . . .
                                                                                                                                                                                             n.13 n.14 n.15
A A A A
B B B B
C C C C
D D D D
E E E E
                                                                                                                                             A A A B B B C C C C D D D D E E E E
                                                                                                                                                                                            A A A B B C C C D D D E E E
                                                A A A B B B C C C C D D D D E E E E
```

```
Compito n.63 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
     (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
     (d) a_n = o(b_n)
Quesito n. 2 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
A + \infty B - \frac{1}{2} C_1 D \frac{1}{2} E_0 F_{-1}
Quesito n. 3 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}} vale
A non esiste \mathbb{B} \frac{1}{2} \mathbb{C} 0 \mathbb{D} + \infty \mathbb{E} \sqrt{2} \mathbb{F} 2
Quesito n. 4 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
Quesito n. 5 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni
 (a) a_n = o(n!) per n \to +\infty;
  (b) a_n = o(2^n) per n \to +\infty
  (c) (a_n) è una successione crescente.
  Allora quelle vere sono:
A solo (a) e (c) B solo (a) C tutte D solo (c) E nessuna F solo (a) e (b)
Quesito n. 6 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale as
A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} non esiste in A^* = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
Quesito n. 7 Quanto vale il limite \lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)?
f A \ 0 \ \ B \ 1 \ \ C \ 3 \ \ D \ non \ esiste \ \ E \ +\infty \ \ F \ e^3
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si ha:
 \boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} 
Quesito n. 9 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha
 \boxed{ \triangle } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \square } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ \blacksquare } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(c_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(a_n) \quad \boxed{
Quesito n. 10 Sia A={f Z}\cup(0,+\infty). Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per A.
 Allora quelle vere sono:
A solo (a) e (b) B solo (a) C solo (a) e (c) D nessuna E solo (b) F solo (c)
Quesito n. 11 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
\lim_{n \to +\infty} \frac{7 \ln(n + e^n) + 2\sqrt{n}}{3 \sqrt[2^n]{n!} + 5n}
                                                                                                                                                              è uguale a:
 Quesito n. 12
A \frac{7}{5} B \frac{2}{5} C_{+\infty} D \frac{2}{3} E \frac{7}{3} F_0
\overline{\textbf{Quesito n. 13}} \hspace{0.1in} \textbf{Sia} \hspace{0.1in} A \hspace{0.1in} \textbf{un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni:}

 (a) A è sempre un intervallo;

  (b) A non ha mai punti isolati;
  (c) il complementare di A è sempre chiuso.
A (b) è vera e (a) e (c) sono false 2 affermazioni sono vere ed una è falsa C (a) è vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) sono false C (a) e vera e (b) e (c) e vera e (b) e vera e (
tutte vere F (a), (b) e (c) sono tutte false
Quesito n. 14 Sia f(x) = \frac{1}{\ln(1 + \frac{1}{x})}. Calcolare f'(x).
                                                                                 \frac{1}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)}
Quesito n. 15 Si considerino le affermazioni:
 (a) \sin x - x = o(x) \text{ per } x \to 0;
  (b) \sin x \approx x \text{ per } x \to 0;
 (c) \frac{\sin x}{x} \to 0 \text{ per } x \to +\infty
 Allora quelle vere sono
oxed{A} solo (a) oxed{B} solo (b) oxed{C} solo (a) e (c) oxed{D} solo (c) oxed{E} tutte oxed{F} nessuna
Quesito n. 16 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
A non esiste B_{-1} C_0 D_{+\infty} E_{-\infty} F_1
Quesito n. 17 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
A_0 B_1 C_6 D_3 E_{+\infty} F_3
Compito n.63 Cognome: . . . .
                                                                                                                                                                                                     n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D D
E E E E
F F F
                                                                                                                                                                                                                            n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E
                                                                                                              | n.7 | n.8 | n.9 |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
| F | F |
  A A A B B B C C C C D D D D E E E E
                                                       | N.5 | N.6 | |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.64 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha: $\boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{C} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \$ Quesito n. 2 II $\lim_{n \to +\infty} \left(1 + \frac{\pi}{n^2}\right)^{en}$ è uguale a: $A e^{e+\pi} B e^{\pi} C e^{2} D + \infty E e^{e\pi} F 1$ Quesito n. 3 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale $A_0 \quad B \stackrel{1}{\stackrel{1}{\stackrel{}{_\sim}}} \quad C \stackrel{-1}{\stackrel{1}{\stackrel{}{_\sim}}} \quad D \stackrel{-1}{\stackrel{}{_\sim}} \quad E_1 \quad F + \infty$ Quesito n. 4 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni (a) 0 è un punto interno per A;(b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B tutte C solo (a) e (c) D nessuna E solo (a) F solo (b) Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: Quesito n. 6 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a: \blacksquare non esiste in \mathbb{R}^* $\boxed{\mathbb{B}} \frac{1}{2}$ $\boxed{\mathbb{C}} \frac{3}{2}$ $\boxed{\mathbb{D}} \ 2$ $\boxed{\mathbb{E}} + \infty$ $\boxed{\mathbb{F}} \ 0$ (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C🖺 2 affermazioni sono vere ed una è falsa 🖺 (b) è vera e (a) e (c) sono false 🖸 (a), (b) e (c) sono tutte vere 🗓 (a) è vera e (b) e (c) sono false 🖼 (c) è vera e (a) e (b) sono false (a), (b) e (c) sono tutte false Quesito n. 8 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{\cos^{-1}}$ A 1 B non esiste $C - \infty$ D $+ \infty$ E 0 F -1Quesito n. 9 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale $A\sqrt{2}$ $B\frac{1}{2}$ C non esiste D_2 E_0 $F_{+\infty}$ Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4) \text{ per } n \to +\infty;$ (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono: A tutte B nessuna C solo (a) e (c) D solo (a) e (b) E solo (a) F solo (c) Quesito n. 11 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x) \text{ per } x \to 0$; (c) $\sin x \approx \tan x \text{ per } x \to 0$ Allora quelle vere sono: $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5n^{\ln n}}$ $\boxed{A} \frac{7}{5} \boxed{B} \frac{2}{5} \boxed{C} + \infty \boxed{D} \frac{2}{3} \boxed{E} \frac{7}{3} \boxed{F}_0$ Quesito n. 13 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)$? f A 3 f B 0 f C non esiste f D $+\infty$ f E 1 f F e^3 Quesito n. 14 Il $\lim_{n\to+\infty} n\left(e^{\frac{3}{n}}-e^{\frac{2}{n}}\right)$ è uguale a: $A_1 \quad B_{\frac{1}{3}} \quad C_{\frac{1}{6}} \quad D_{\frac{2}{3}} \quad E_{+\infty} \quad F_0$ Quesito n. 15 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ \overline{A} solo (a), (b) e (c) \overline{B} nessuna \overline{C} solo (d) \overline{D} solo (c) e (d) \overline{E} solo (b) e (c) \overline{F} solo (c) Quesito n. 17 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). $\boxed{\textbf{A}} \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{\textbf{B}} \ \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{C}} \ -\frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{D}} \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \boxed{\textbf{E}} \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{\textbf{F}} \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}}$.. Matr:.... n.10 n.11 n.12
A A A
B B B
C C C
D D D
E E E E
F F F n.7 n.8 n.9
A A A A
B B B B
C C C
D D D
E E E E
F F F | n.13 | n.14 | n.15 | n.16 | n.17 |
A	A	A	A								
B	B	B	B								
C	C	C	C								
D	D	D	D								
E	E	E									
F	F	F	F	F		n.1	n.2	n.3	n.4	n.5	n.6
A	A	A	A	A	A						
B	B	B	B	B	B						
C	C	C	C	C							
D	D	D	D								
E	E	E	E	E							
F	F	F	F	F							

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.65 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4) \text{ per } n \to +\infty;$ **(b)** $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n\to+\infty} a_n = +\infty$. Allora quelle vere sono A solo (a) B nessuna C tutte D solo (a) e (c) E solo (a) e (b) F solo (c) Quesito n. 2 Il $\lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + e^2}}$ vale A 0 B $+\infty$ C non esiste D 2 E $\frac{1}{2}$ F $\sqrt{2}$ Quesito n. 3 Sia $f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}$. Calcolare f'(x) $\frac{\text{[A]} \frac{1}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)}}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)} \frac{\text{[B]} - \frac{1}{x^2}\ln\left(1+\frac{1}{x}\right)}{\text{[C]} - \frac{1}{x^2} - \frac{1}{x^3}} \frac{\text{[D]} 1 + \frac{1}{x}}{\ln\left(1+\frac{1}{x}\right)} \frac{\text{[E]} \frac{1}{x^2\ln^2\left(1+\frac{1}{x}\right)}}{\ln\left(1+\frac{1}{x}\right)\ln^2\left(1+\frac{1}{x}\right)} \frac{-x}{(x+1)\ln^2\left(1+\frac{1}{x}\right)}$ Quesito n. 4 II $\lim_{n\to+\infty} n\left(e^{\frac{1}{2n}} - e^{\frac{1}{2n}}\right)$ è uguale a: $\boxed{\mathbf{A}}_0 \boxed{\mathbf{B}}_{\frac{1}{3}} \boxed{\mathbf{C}}_{+\infty} \boxed{\mathbf{D}}_{\frac{1}{6}} \boxed{\mathbf{E}}_{\frac{2}{3}} \boxed{\mathbf{F}}_1$ Quesito n. 5 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 6 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a: Quesito n. 7 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln \left(1 + \frac{x}{3}\right)$? $f A e^3$ f B non esiste f C 0 f D $+\infty$ f E 3 f F 1 Quesito n. 9 Il $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a: $A \stackrel{2}{=} B_2 C_4 D_8 E_8 F_9$ Quesito n. 10 $\lim_{n \to +\infty} \frac{3}{3e^{n^2} + 5(n!)^2}$ è uguale a: $A = \frac{2}{5} B = \frac{7}{3} C + \infty D_0 E = \frac{7}{5} E = \frac{2}{3}$ Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $b_n = 3^n$ e $c_n = 2^n$, si ha: $\boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{B} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{D} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} \ a_n$ Quesito n. 12 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ A non esiste B 1 C 0 D $+\infty$ E $-\infty$ F Quesito n. 13 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale $A + \infty$ B_1 C_{-1} $D_{-\frac{1}{2}}$ $E_{\frac{1}{2}}$ F_0 Quesito n. 14 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A;(b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: Quesito n. 15 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) in ogni caso C è compatto; (b) in ogni caso C contiene tutti i suoi punti di accumulazione: (c) in ogni caso C non ha punti interni. A (a) è vera e (b) e (c) sono false (b) e (c) sono tutte false (c) è vera e (a) e (b) sono false (d) 2 affermazioni sono vere ed una è falsa (e) è vera e (a) e (c) sono false F (a), (b) e (c) sono tutte vere Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n \sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha: $\boxed{ \boxed{\textbf{A}} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{E}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{C}} \ a_n = o(b_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{D}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{E}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{E}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n)$ Quesito n. 17 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (a) e (c) B solo (a) C tutte D nessuna E solo (b) F solo (c) Compito n.65 Cognome: n.10 n.11 n.12
A A A
B B B B
C C C C
D D D
E E E E
F F F n.7 n.8 n.9
A A A
B B B
C C C C
D D D
E E E E
F F F

Compito n.66 del test di preselezione per il I esonero	Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Quanto vale il limite $\lim_{x\to+\infty} x \ln\left(1+\frac{3}{x}\right)$?	
A non esiste $B_0 C_1 D_e^3 E_{+\infty} F_3$	
Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha:	
$ \underline{\underline{\mathbf{A}}} \ a_n = o(b_n) \in b_n = o(c_n) \ \underline{\underline{\mathbf{B}}} \ a_n = o(c_n) \in c_n = o(b_n) \ \underline{\underline{\mathbf{C}}} \ b_n = o(c_n) \in c_n = o(a_n) \ \underline{\underline{\mathbf{D}}} \ c_n = o(b_n) \in b_n = o(a_n) \ \underline{\underline{\mathbf{E}}} \ b_n = o(a_n) \ \underline{\underline{\mathbf{D}}} \ c_n = o(b_n) \in b_n = o(a_n) \ \underline{\underline{\mathbf{C}}} \ b_n = o(a_n) \ \underline{\underline{\mathbf{C}$	$= o(a_n) \in a_n = o(c_n)$ $\stackrel{\text{F}}{=} c_n = o(a_n) \in a_n = o(b_n)$
Quesito n. 3 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$	
$A - \infty$ $B + \infty$ $C - 1$ D_1 E_0 F non esiste Quesito n. 4 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette:	
(a) $a_n \approx b_n \text{ per } n \to +\infty;$	
(b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$	
(c) $a_n = O(b_n)$	
(d) $a_n = o(b_n)$	
$ \underline{\mathbf{A}} \operatorname{solo}(\mathbf{b}) \operatorname{e}(\mathbf{c}) \underline{\mathbf{B}} \operatorname{solo}(\mathbf{c}) \operatorname{e}(\mathbf{d}) \underline{\mathbf{C}} \operatorname{solo}(\mathbf{c}) \underline{\mathbf{D}} \operatorname{solo}(\mathbf{d}) \underline{\mathbf{E}} \operatorname{solo}(\mathbf{a}), (\mathbf{b}) \operatorname{e}(\mathbf{c}) \underline{\mathbf{F}} \operatorname{nessuna} $	
Quesito n. 5 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a:	
Quesito n. 6 Sia C un sottoinsieme non vuoto di R . Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto;	
 (b) se C è chiuso allora ogni successione (a_n) ⊂ C converge; (c) se C è chiuso allora anche il suo complementare è chiuso. 	
Allora: $ \underline{\underline{A}} $ (b) è vera e (a) e (c) sono false $\underline{\underline{B}}$ 2 affermazioni sono vere ed una è falsa $\underline{\underline{C}}$ (c) è vera e (a) e (b) sono false $\underline{\underline{D}}$	(a) (b) a (c) sono tutta falsa E (a) (b) a (c) sono
tutte vere F (a) è vera e (b) e (c) sono false	(a), (b) e (c) sono tutte raise \(\begin{align*} \begin{align*} \
Quesito n. 7 Si considerino le affermazioni: (a) $\sin x - x = o(x)$ per $x \to 0$;	
(b) $\sin x \approx x \text{ per } x \to 0;$ (c) $\frac{\sin x}{x} \to 0 \text{ per } x \to +\infty.$	
Allora quelle vere sono:	
A solo (c) B solo (a) e (c) C nessuna D solo (a) E solo (b) F tutte	
Quesito n. 8 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:	
(a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) (a_n) è una successione crescente. Allora quelle vere sono:	
A solo (a) B nessuna C solo (c) D solo (a) e (c) E solo (a) e (b) F tutte	
Quesito n. 9 Sia $A = [-3,3] \cap \mathbf{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A ; (b) 0 è un punto di accumulazione per A ; (c) $\sqrt{3}$ è un punto interno per A . Allora quelle vere sono:	
A solo (a) B solo (a) e (b) C solo (b) D nessuna E tutte F solo (a) e (c)	
Quesito n. 10 Il $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale	
$A - \frac{1}{2} B - 1 C 1 D \frac{1}{2} E + \infty F 0$	
Quesito n. 11 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare $f'(x)$.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ è uguale a:	
Quesito n. 13 II $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale	
$\boxed{A} \frac{1}{2} \boxed{B} \ 0 \boxed{C} + \infty \boxed{D} \ 2 \boxed{E} \text{ non esiste} \boxed{F} \sqrt{2}$	
Quesito n. 14 II $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi}$ è uguale a:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\frac{\boxed{\textbf{A}} \ \frac{1}{3} \ \boxed{\textbf{B}} \ 0 \ \boxed{\textbf{C}} \ 1 \ \boxed{\textbf{D}} \ \frac{1}{6} \ \boxed{\textbf{E}} \ \frac{2}{3} \ \boxed{\textbf{F}} + \infty$ $\boxed{\textbf{Quesito n. 16} \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{è definita solo per} \ x > 0. \ \text{Allora, per tutti i valori di} \ x}$	
Quesito n. 16 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di $x = \frac{A}{2} \left(\ln^2 x\right)^{\ln^2 x}$ B $\left(\ln x^2\right)^{\ln x^2}$ C $\left(\ln x\right)^{2\ln x}$ D $\left(\ln x\right)^{2\ln x}$ E $\left(\ln x\right)^{2\ln x}$ F $\left(\ln x\right)^{2\ln x}$	per i quali è definita, $g\circ h\circ f$ è uguale a
Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[5]{n}$ e $c_n = \ln n$, si ha:	
	= o(a) e(a) = o(c) Fig. $= o(b) e(b) = o(c)$
Compito n.66 Cognome: Nome: Matr: n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 n.17 A <t< td=""><td></td></t<>	
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 n.17 A	
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 n.17 A	
EEEEEEEEEEEEEEEE	

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.67 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 II \lim_{x\to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + e^2}} vale
A \sqrt{2} B_2 C_{+\infty} D_{\text{non esiste}} E_0 F
 Quesito n. 2 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
Quesito n. 3 \lim_{x\to+\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
f A \ 0 \quad f B \ 1 \quad f C \ - rac{1}{2} \quad f D \ rac{1}{2} \quad f E \ + \infty \quad f F \ - 1
 Quesito n. 4 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
Quesito n. 5 Il \lim_{n \to \infty} n\left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a:
A = \frac{1}{6} \quad B = \frac{1}{3} \quad C = \frac{2}{3} \quad D_0 \quad E_{+\infty} \quad F_1
 Quesito n. 6 Si considerino le affermazioni
 (a) e^x - 1 \approx x \text{ per } x \to 0;
(b) e^x - 1 = o(x) \text{ per } x \to 0;
  (c) e^x - 1 = x + o(x) \text{ per } x \to x + o(x)
  Allora quelle vere sono:
A solo (a) e (c) B solo (a) C solo (b) e (c) D nessuna E solo (c) F solo (b)
Quesito n. 7 Sia A = \mathbf{R} - \{\sqrt{2}\}. Si considerino le affermazioni:

 (a) √2 appartiene alla chiusura di A;

 (b) 0 è un punto di accumulazione per A;

  (c) √2 è un punto interno per A.
  Allora quelle vere sono
A tutte B solo (a) e (c) C nessuna D solo (a) E solo (a) e (b) F solo (b)
Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
 \boxed{ \triangle} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \blacksquare} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \square} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \square} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \blacksquare} \ c_n = o(b_n) \ \textbf{e} \ c
Quesito n. 9 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si ha:
 \boxed{ \boxed{ \boxed{A} } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ \boxed{E} } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ \boxed{C} } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \quad \boxed{ \boxed{D} } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \quad \boxed{ \boxed{E} } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ \boxed{E} } \ a_n = 
Quesito n. 10 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 \boxed{ \textbf{A} \, \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} \, \left( \ln x \right)^{2 \ln x} } \quad \boxed{ \textbf{C} \, } \, 2x \ln x \quad \boxed{ \textbf{D} \, } \, x^2 \ln^2 x \quad \boxed{ \textbf{E} \, \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{F} \, } \, 2x^2 \ln |x| 
                                                    \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}
 Quesito n. 11
\boxed{A}_{+\infty} \boxed{B}_{\frac{2}{3}} \boxed{C}_{\frac{7}{3}} \boxed{D}_{\frac{2}{5}} \boxed{E}_{0} \boxed{F}_{\frac{7}{5}}
Quesito n. 12 II \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
A = \frac{2}{3} B = C = \frac{4}{3} D = E = \frac{8}{3} E = 4
Quesito n. 13 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)?
A + \infty B non esiste C 0 D e^3 E 1 F 3
Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
A = B - 1 C - \infty D = 0 E = 0 non esiste E + \infty
Quesito n. 15 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
A 1 B e^{\pi} C e^{e\pi} D e^{e+\pi} E e^2 F +\infty
Quesito n. 16 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni:
  (a) A è sempre un intervallo;
 (b) A non ha mai punti isolati;(c) il complementare di A è sempre chiuso.
🖾 2 affermazioni sono vere ed una è falsa 🖺 (c) è vera e (a) e (b) sono false 🚨 (a), (b) e (c) sono tutte false 📮 (b) è vera e (a) e (c) sono false 📮 (a) è vera e (b) e (c)
sono false F (a), (b) e (c) sono tutte vere
Quesito n. 17 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) per n \to +\infty;
(b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
```

A solo (c) B nessuna C solo (a) e (b) D solo (a) e (c) E solo (a) F tutte

Allora quelle vere sono:

Quesito n. 17 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $\boxed{A} \ 0 \ \boxed{B} - \frac{2}{5} \ \boxed{C} \ \frac{1}{5} \ \boxed{D} + \infty \ \boxed{E} \ \frac{2}{5} \ \boxed{F} - \frac{1}{5}$ Compito n.68 Cognome: Nome: Matr: ...

www.	probl	emisv	olti.	it

n.7 n.8 n.9
A A A
B B B B
C C C
D D D
E E E E
F F F

(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$

(c) $a_n = O(b_n)$

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
  Compito n.71 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                     Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Quesito n. 1 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ f \circ h è uguale a
 \lim_{n\to+\infty}\frac{7n^{2n}+2\left(n!\right)^{2}}{3\left(\sqrt{n}\right)^{3n}+5n^{\ln n}}\quad\text{è uguale a:}
 A \frac{7}{3} B_0 C \frac{2}{5} D_{+\infty} E \frac{2}{3} F \frac{7}{5}
 Quesito n. 3 Si considerino le affermazioni:
  (a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;
  (c) e^x - 1 = x + o(x) per x \to +\infty.
  Allora quelle vere sono
 A nessuna B solo (a) C solo (b) e (c) D solo (a) e (c) E solo (c) F solo (b)
 Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
(b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
    (\mathbf{d}) \ a_n = o\left(b_n\right)
 oxed{A} solo (b) e (c) oxed{B} solo (c) oxed{C} solo (a), (b) e (c) oxed{D} solo (c) e (d) oxed{E} nessuna oxed{F} solo (d)
  Quesito n. 6 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x).
 \frac{ [\underline{\mathbf{A}}] \ \frac{1}{1+e^{2x}} \ [\underline{\mathbf{B}}] \ \frac{1}{2xe^{2x}} \ [\underline{\mathbf{C}}] \ \frac{2xe^{x^2}}{1+e^{x^2}} \ [\underline{\mathbf{D}}] \ \frac{1}{1+e^{x^2}} \ [\underline{\mathbf{E}}] \ \frac{e^{2x}}{1+e^{x^2}} \ [\underline{\mathbf{F}}] \ \frac{e^{x^2}}{1+e^{x^2}} }{ \mathbf{Quesito n. 7} \ 11 \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1+4x^4}} \ \text{vale} } 
 A\sqrt{2} B + \infty C_2 D_0 E_{\text{non esiste}} F = \frac{1}{2}
 Quesito n. 8 Il \lim_{n\to+\infty} \left(1+\frac{1}{en}\right)^{n+\pi} è uguale a:
 Quesito n. 9 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}
 f A 1 \f B +\infty \f C non esiste \f D -1 \f E -\infty \f F 0
 Quesito n. 10 Sia C un sottoinsieme non vuoto di \mathbf{R}. Si considerino le affermazioni:
  (a) se C è chiuso allora è anche limitato:
  (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
  (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C.
 (a), (b) e (c) sono tutte false (c) è vera e (a) e (b) sono false (c) affermazioni sono vere ed una è falsa (d) (e) e vera e (b) e (c) sono false (e) (e) sono false (e) (e) sono false (e) (e) sono false (false) (fa
 tutte vere F (b) è vera e (a) e (c) sono false
  Quesito n. 11 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni
  (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per A.
  Allora quelle vere sono:
 A solo (a) e (c) B solo (a) e (b) C solo (c) D solo (b) E solo (a) F nessuna
 Quesito n. 12 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right) vale
 A = \frac{1}{2} B + \infty C = 1 D_1 E_0 F = \frac{1}{2}
 Quesito n. 13 Il \lim_{n\to+\infty} n\left(e^{\frac{3}{n}}-e^{\frac{2}{n}}\right) è uguale a:
 A_1 B_0 C_{\frac{1}{6}} D_{\frac{2}{3}} E_{\frac{1}{3}} F_{+\infty}
 Quesito n. 14 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
  (a) a_n = o(n!) \text{ per } n \to +\infty;
  (b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.

Allora quelle vere sono:
 A solo (a) e (b) B solo (a) C solo (a) e (c) D nessuna E tutte F solo (c)
 Quesito n. 15 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)?
 A non esiste B 3 C 1 D +\infty E e^3 F 0
  Quesito n. 16 Date le successioni (a_n), (\overline{b_n}) e (c_n) definite da a_n = n^{100}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si ha:
  \boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(c_n) \ \mathbf{e}
```

Quesito n. 17 II $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a:

 $A_2 B_4 C_{\frac{8}{3}} D_8 E_{\frac{4}{3}} F_{\frac{2}{3}}$

Compito n.71 Cognome:

```
A A A A B B B C C C C C D D D D E E E E F F F F
                                                                n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
F F F
                                                                                                     A A A A B B B C C C C C D D D D E E E E E F F F F
A A A B B B C C C C C D D D D D E E E E
```

```
Compito n.72 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Date a_n = \frac{3}{n}
                                                                                                 e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
     (c) a_n = O(b_n)
    (\mathbf{d}) \ a_n = o\left(b_n\right)
oxed{\mathbb{A}} solo (c) e (d) oxed{\mathbb{B}} solo (a), (b) e (c) oxed{\mathbb{C}} solo (b) e (c) oxed{\mathbb{D}} solo (c) oxed{\mathbb{E}} solo (d) oxed{\mathbb{F}} nessuna
Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si ha:
 \boxed{\textbf{A}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{B}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{C}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{D}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{F}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \ \textbf{e}
Quesito n. 3 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni:

 (a) il complementare di C è sempre aperto;

  (b) in ogni caso C contiene la sua frontiera;
  (c) C può avere punti isolati.
  Allora:
A (b) e vera e (a) e (c) sono false B (a), (b) e (c) sono tutte false C (a), (b) e (c) sono tutte vere D (c) è vera e (a) e (b) sono false E (a) è vera e (b) e (c) sono
false F 2 affermazioni sono vere ed una è falsa
Quesito n. 4 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A 2 B \sqrt{2} C +\infty D \frac{1}{2} E 0 F non esiste
Quesito n. 5 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}
A 1 B non esiste C - \infty D + \infty E -1 F 0
Quesito n. 6 Per ogni n \in \mathbf{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n\in\mathbb{N}} a_n = +\infty;
(b) \lim_{n\to+\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
  Allora quelle vere sono:
A solo (c) B solo (a) C nessuna D tutte E solo (a) e (b) F solo (a) e (c)
Quesito n. 7 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
 \boxed{ \textcolor{red}{\mathbf{A}} \, \frac{3}{x} \sin^2{(\ln{x})} \cos{(\ln{x})} \quad \boxed{ \textcolor{red}{\mathbf{B}} \cos^3{(\ln{x})} \quad \boxed{ \textcolor{red}{\mathbf{C}} \, 3 \cos^2{\left(\frac{1}{x}\right)} \quad \boxed{ \textcolor{red}{\mathbf{D}} \sin^3{\left(\frac{1}{x}\right)} \quad \boxed{ \textcolor{red}{\mathbf{E}} \, 3 \sin^2{(\ln{x})} \cos{(\ln{x})} \quad \boxed{ \textcolor{red}{\mathbf{F}} \, \frac{3}{x} \cos^2{(\ln{x})} } } 
Quesito n. 8 Il \lim_{n \to +\infty} \left(1 - \frac{1}{en}\right)
                                                                                                                                   è uguale a
A = B e^{-e+\pi} \quad C \quad D \quad E e^{-\pi} \quad F \quad 1
Quesito n. 9 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale as
A - \frac{1}{5} B + \infty C_0 D \frac{1}{5} E - \frac{2}{5} F \frac{2}{5}
Quesito n. 10 Il \lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2}-\sqrt{x^3+1}\right) vale
A_0 B_{-1} C_{+\infty} D_1 E_{-\frac{1}{2}} F_{\frac{1}{2}}
Quesito n. 11 Sia A = [-3, 3] \cap \mathbf{Q}. Si considerino le affermazioni
  (a) 0 è un punto interno per A;
  (b) 0 è un punto di accumulazione per A;
 (c) \sqrt{3} è un punto interno per A.
 Allora quelle vere sono:
A solo (a) B tutte C solo (a) e (b) D nessuna E solo (a) e (c) F solo (b)
                                                        \lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}
\boxed{\mathbf{A}}_{0} \boxed{\mathbf{B}}_{\frac{2}{3}} \boxed{\mathbf{C}}_{\frac{7}{5}} \boxed{\mathbf{D}}_{\frac{2}{5}} \boxed{\mathbf{E}}_{\frac{7}{3}} \boxed{\mathbf{F}}_{+\infty}
Quesito n. 13 Si considerino le affermazioni:
(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;
 (c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
 Allora quelle vere sono:
A solo (a) e (c) B solo (a) C tutte D solo (b) E nessuna F solo (c)
Quesito n. 14 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
oxed{A}_3 oxed{B}_{non \ esiste} oxed{C}_{e^3} oxed{D}_1 oxed{E}_0 oxed{F}_{+\infty}
Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{B}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ c_n = o(a_n) \quad \boxed{ \underline{
Quesito n. 16 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
Quesito n. 17 Il \lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right) è uguale a:
A = \frac{1}{6} \quad B + \infty \quad C = \frac{1}{3} \quad D = \frac{2}{3} \quad E_0 \quad E_1
Compite n.72 Cognome: Nome: Matr:
                                                                                                                                                  n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D
E E E E
F F F
                                                                                                                                                                                                  n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E
                                                                                                 n.16 n.17 A B B B C C C D D D E E E
                                                | n.1 | n.2 | n.3 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E |
```

```
Compito n.73 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                           Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.
  Allora quelle vere sono:
 Quesito n. 2 \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} è uguale a:
A + \infty B \frac{7}{5} C \frac{2}{5} D_0 E \frac{2}{3} F \frac{7}{3}
 Quesito n. 3 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 oxed{A} solo (c) oxed{B} solo (a), (b) e (c) oxed{C} solo (d) oxed{D} nessuna oxed{E} solo (b) e (c) oxed{F} solo (c) e (d)
 Quesito n. 4 Si considerino le affermazioni:
  (a) e^x - \cos x = o(x) per x \to 0;
  (b) 1 - \cos x = x + o(x) \text{ per } x \to 0;
  (c) e^x - \cos x \approx x \text{ per } x \to 0.
  Allora quelle vere sono:
 A solo (b) B nessuna C solo (b) e (c) D solo (c) E solo (a) F solo (a) e (b)
 Quesito n. 5 Il \lim_{x\to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}} vale
f A 2 \f B +\infty \f C \frac{1}{2} \f D non esiste \f E 0 \f F \sqrt{2}
 Quesito n. 6 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x)
 \boxed{ \underline{\mathbf{A}} } \; \frac{1}{1+e^{x^2}} \; \; \boxed{ \underline{\mathbf{B}} } \; \frac{1}{2xe^{2x}} \; \; \boxed{ \underline{\mathbf{C}} } \; \frac{2xe^{x^2}}{1+e^{x^2}} \; \; \boxed{ \underline{\mathbf{D}} } \; \frac{e^{2x}}{1+e^{x^2}} \; \; \boxed{ \underline{\mathbf{E}} } \; \frac{1}{1+e^{2x}} \; \; \boxed{ \underline{\mathbf{F}} } \; \frac{e^{x^2}}{1+e^{x^2}} 
 \frac{1+e^x}{2xe^{-x}} \frac{1+e^x}{1+e^x} \frac{1+e^x}{1+e^x} \frac{1+e^x}{1+e^x} \frac{1+e^x}{1+e^x}
(a) se A è aperto allora la sua frontiera è vuota;

 (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;

 (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
 A solo (c) B nessuna C tutte D solo (a) E solo (b) F solo (b) e (c)
 Quesito n. 8 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
 A \ 0 \ B + \infty \ C \ \text{non esiste} \ D - 1 \ E \ 1 \ F - \infty
 Quesito n. 9 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
 A_0 B_1 C_{-\frac{1}{2}} D_{-\frac{1}{3}} E_{-\infty} F_{-1}
 Quesito n. 10 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ f \circ g è uguale a
 Quesito n. 11 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{x^2}\right)?
 A + \infty B \cdot 1 C \cdot non \cdot esiste D \cdot 0 E \cdot e^3 E \cdot 3
 Quesito n. 12 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni

 (a) √2 appartiene alla chiusura di A;

 (b) 0 è un punto di accumulazione per A;

 (c) \sqrt{2} è un punto interno per A. Allora quelle vere sono:
A nessuna B solo (b) C solo (a) D solo (a) e (c) E tutte F solo (a) e (b)

Quesito n. 13 II \lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)} è uguale a:
 A = \frac{1}{2} B = 1 C = 0 D + \infty E = 2 E = 0 non esiste in R^*
 Quesito n. 14 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a
 Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[5]{n} e c_n = \ln n, si ha:
  \boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \\ \boxed{ \textbf{C} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \\ \boxed{ \textbf{D} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \\ \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \\ \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n) \\ \boxed{ \textbf{E} } \ a_n = o(a_n) \ \textbf{e} \ a_n = o(a_n)  
 Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^n, b_n = 3^n e c_n = 2^n, si ha:
 Quesito n. 17 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
\boxed{\mathbb{A}_{+\infty}} \quad \boxed{\mathbb{B}_{6}} \quad \boxed{\mathbb{C}_{3}} \quad \boxed{\mathbb{D}_{3}} \quad \boxed{\mathbb{E}_{0}} \quad \boxed{\mathbb{F}_{1}}

    n.7
    n.8
    n.9

    A
    A
    B

    B
    B
    B

    C
    C
    C

    D
    D
    D

    E
    E
    E

    F
    F
    F
```

```
Quesito n. 1 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
  (a) a_n \approx b_n \text{ per } n \to +\infty;
  (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}
  (c) a_n = O(b_n)
  (d) a_n = o(b_n)
\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}
                                                                                     è uguale a:
A \frac{7}{5} B_0 C \frac{2}{3} D \frac{2}{5} E \frac{7}{3} F_{+\infty}
Quesito n. 3 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + x} \right) vale
A - 1 B + \infty C 0 D \frac{1}{2} E 1 F - \frac{1}{2}
Quesito n. 4 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \ e \ b_n = o(c_n) \ \boxed{ E} \ a_n = o(c_n) \ e \ c_n = o(b_n) \ \boxed{ C} \ c_n = o(b_n) \ e \ b_n = o(a_n) \ \boxed{ E} \ b_n = o(a_n) \ \boxed{ E} \ c_n = o(a_n) \ \boxed{ E} \ b_n = o(a_n) \ \boxed{ E} \
Quesito n. 5 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
A non esiste B_2 C_0 D_{\sqrt{2}} E_{+\infty} F_{\frac{1}{2}}
Quesito n. 6 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si has
 \boxed{ \triangle } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ e \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \ \ e \ c_n = o(a_n) \ \ e \ c_n = o(b_n) 
Quesito n. 7 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
\textbf{Quesito n. 8} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{\`e} \ \text{definita solo per} \ x > 0. \ \text{Allora, per tutti i valori di} \ x \ \text{per i quali \'e} \ \text{definita,} \ g \circ h \circ f \ \text{\`e} \ \text{uguale a}
Quesito n. 9 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni:
 (a) 2 \text{ è un punto di accumulazione per } A;
 (b) 5 appartiene alla chiusura di A;
 (c) 9 è un punto di accumulazione per A
 Allora quelle vere sono:
A solo (a) e (c) B solo (a) C nessuna D solo (a) e (b) E tutte F solo (b)
Quesito n. 10 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni

 (a) il complementare di C è sempre aperto;

 (b) in ogni caso C contiene la sua frontiera;
 (c) C può avere punti isolati.
 Allora:
(a) (b) (c) sono tutte vere (a) (c) sono false (b) (c) sono false (c) (b) è vera (a) (c) sono false (d) (a), (b) (c) sono tutte false (e) 2 affermazioni sono vere ed
una è falsa F (c) è vera e (a) e (b) sono false
Quesito n. 11 Si considerino le affermazioni
(a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;
 (c) e^x - 1 = x + o(x) \text{ per } x \to +\infty.
Allora quelle vere sono
A solo (b) e (c) B solo (a) C solo (c) D solo (a) e (c) E nessuna F solo (b)
Quesito n. 12 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
 Allora quelle vere sono:
A solo (a) e (c) B solo (a) e (b) C solo (c) D nessuna E solo (a) F tutte
Quesito n. 13 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
Quesito n. 14 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\kappa}
A 0 B \frac{1}{e} C 1 D e E e^{-\pi} F e^{-e+\pi}
Quesito n. 15 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
Quesito n. 16 Il \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)} è uguale a:
A 3 B -1 C -\infty D \frac{1}{2} E \frac{1}{4} F \frac{3}{4}
Quesito n. 17 Il \lim_{n \to +\infty} \frac{n^2}{3} \left(1 - \cos \frac{2}{n}\right) è uguale a:
A_0 \xrightarrow{B} \frac{1}{6} \xrightarrow{C_1} \xrightarrow{D} \frac{2}{3} \xrightarrow{E_{+\infty}} \xrightarrow{F} \frac{1}{3}
Compito n.74 Cognome: . .
                                                                                                                                                                  n.1 n.2 n.3
A A A A
B B B B
C C C C
D D D D
                             n.4 n.5 n.6
A A A
B B B B
C C C
D D D
                                                          n.7 n.8 n.9
A A A
B B B
C C C C
D D D
                                                                                          n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D D
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.75 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a Quesito n. 2 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale $A \sqrt{2}$ $B \frac{1}{2}$ C non esiste D_2 $E_{+\infty}$ F_0 Quesito n. 3 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)$ Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha: $\boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{C} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(a$ Quesito n. 5 Si considerino le affermazioni: (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A solo (a) e (b) B solo (b) e (c) C solo (a) D solo (b) E nessuna F solo (c) Quesito n. 6 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}$ $f A \ 0 \quad B \ -1 \quad C \ -\infty \quad D \ non \ esiste \quad E \ +\infty \quad F \ 1$ Quesito n. 7 $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale as $A \frac{7}{5} B_0 C \frac{7}{3} D_{+\infty} E \frac{2}{5} F \frac{2}{5}$ Quesito n. 8 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A_1 B_{\frac{2}{3}} C_{\frac{1}{3}} D_{+\infty} E_0 F_{\frac{1}{6}}$ Quesito n. 9 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ $C = \begin{bmatrix} 1 \\ 2$ Quesito n. 11 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono A solo (b) B solo (a) e (b) C nessuna D solo (a) E solo (c) F solo (a) e (c) Quesito n. 12 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+1} \right)$ vale $A = \frac{1}{2}$ B_1 $C = \frac{1}{2}$ D = 1 $E = \infty$ F_0 Quesito n. 13 Sia $f(x) = \sin^3(\ln x)$. Calcolare f'(x) $\boxed{\textbf{A} \ 3 \sin^2{(\ln x)} \cos{(\ln x)}} \quad \boxed{\textbf{B} \ \cos^3{(\ln x)}} \quad \boxed{\textbf{C} \ \sin^3{\left(\frac{1}{x}\right)}} \quad \boxed{\textbf{D} \ 3 \cos^2{\left(\frac{1}{x}\right)}} \quad \boxed{\textbf{E} \ \frac{3}{x} \sin^2{(\ln x)} \cos{(\ln x)}} \quad \boxed{\textbf{F} \ \frac{3}{x} \cos^2{(\ln x)}}$ Quesito n. 14 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 15 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(c_n) \ e \ c_n = o(a_n) \qquad \boxed{ \square } \ c_n = o(a_n) \ e \ a_n = o(b_n) \qquad \boxed{ \square } \ a_n = o(b_n) \ e \ b_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \qquad \boxed{ \blacksquare } \ a_n = o(c_n) \ e \ c_n = o(b_n)$ Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbb{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) e (c) B nessuna C solo (c) D solo (a) e (b) E solo (a) F tutte Quesito n. 17 Sia A un sottoinsieme aperto e non vuoto di \mathbf{R} . Si considerino le affermazioni: (a) A è sempre un intervallo; (b) A non ha mai punti isolati; (c) il complementare di A è sempre chiuso. A (b) è vera e (a) e (c) sono false (c) è vera e (a) e (b) sono false (c) è vera e (a) e (b) sono false (d) e (c) sono tutte vere (d) e (d) e (e) sono tutte vere (e) e (figure 2) affermazioni sono vere ed una è falsa (figure 3) e (figure 4) e (figure 4 sono false \overline{F} (a), (b) e (c) sono tutte false n.10 n.11 n.12
A A A A
B B B B
C C C C
D D D
E E E E
F F F n.13 n.14 n.15
A A A
B B B B
C C C
D D D
E E E
F F F n.7 n.8 n.9
A A A A
B B B B
C C C C
D D D D
E E E E
F F F | n.4 | n.5 | n.6 | |
A	A	A	
B	B	B	
C	C	C	
D	D	D	
E	E	E	
F	F	F	

www.problemisvolti.it

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.76 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                  Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Il \lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1+x^4}} vale
              \mathbb{B}_2 \mathbb{C}_{+\infty} \mathbb{D}_0 \mathbb{E}_{\text{non esiste}} \mathbb{F}_{\sqrt{2}}
Quesito n. 2 \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
A + \infty B non esiste in R^* C_2 D 0 E \frac{3}{2} F \frac{1}{2}
Quesito n. 3 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
f A 1 f B non esiste f C 0 f D +\infty f E 3 f F
Quesito n. 4 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni
 (a) 2 è un punto di accumulazione per A;(b) 5 appartiene alla chiusura di A;
 (c) 9 è un punto di accumulazione per A.
 Allora quelle vere sono:
A solo (a) e (c) B solo (a) C nessuna D solo (b) E solo (a) e (b) F tutte
 Quesito n. 5 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x)
Quesito n. 6 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere
 (a) se A è aperto allora la sua frontiera è vuota;
 (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
 (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
A nessuna B solo (a) C solo (c) D solo (b) E tutte F solo (b) e (c)
                                        \lim_{n \to +\infty} \frac{7\ln(n+e^n) + 2\sqrt{n}}{3\sqrt[2n]{n!} + 5n} \quad \text{è uguale a:}
 Quesito n. 7
A + \infty B = \frac{2}{5} C_0 D = \frac{2}{3} E = \frac{7}{3} E = \frac{7}{5}
Quesito n. 8 II \lim_{n \to +\infty} \frac{\sin \frac{3}{n^2}}{\left(1 - \cos \frac{3}{n}\right)}
A_{+\infty} B_1 C_{\frac{2}{3}} D_{\frac{1}{6}} E_0 F_{\frac{1}{3}}
 Quesito n. 9 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si has
 \boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{B} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{D} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{F} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) 
Quesito n. 10 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
A = \frac{3}{2} B = 0 C = \frac{1}{2} D = 1 E = +\infty E = 1
Quesito n. 11 Si considerino le affermazioni:

 (a) tan x − sin x = o (x) per x → 0;

 (b) \sin x = o(x) \text{ per } x \to 0
 (c) \sin x \approx \tan x \text{ per } x \to 0
 Allora quelle vere sono:
A nessuna B tutte C solo (c) D solo (a) e (c) E solo (a) F solo (b)
Quesito n. 12 II \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
f A 1 \f B \sqrt{e} \f C e^2 \f D +\infty \f E \f e \f E \f e^e
Quesito n. 13 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ f \circ h è uguale a
Quesito n. 14 Quanto vale il limite \lim_{x \to \infty} x \ln \left(1 + \frac{3}{x^2}\right)?
A non esiste Be^3 C_3 D_1 E_0 F_{+\infty}
Quesito n. 15 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.
 Allora quelle vere sono:
A solo (a) e (b) B nessuna C solo (a) D solo (a) e (c) E solo (c) F tutte
 Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \qquad \boxed{ \square } \ b_n = o(a_n) \in c_n = o(a_n) \qquad \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \blacksquare } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) = b_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) \qquad \boxed{ \blacksquare } \ c_n = o(b_n) \qquad \boxed{ \blacksquare }
Quesito n. 17 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
  (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
  (\mathbf{d}) \ a_n = o\left(b_n\right)
oxed{A} solo (d) oxed{B} nessuna oxed{C} solo (a), (b) e (c) oxed{D} solo (b) e (c) oxed{E} solo (c) oxed{F} solo (c) e (d)
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.77 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                     Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
A + \infty B 2e C e D 1 E e + 1 F e^e
Quesito n. 2 Il \lim_{n\to+\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right) è uguale a:
A_1 B_0 C\frac{1}{3} D\frac{2}{3} E\frac{1}{6} F_{+\infty}
Quesito n. 3 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si ha:
 \boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \ \boxed{ \blacksquare } \ c_n = o(a_n) \ e \ a_n = o(b_n) \ \boxed{ \square } \ b_n = o(a_n) \ e \ a_n = o(c_n) \ \boxed{ \square } \ a_n = o(b_n) \ e \ b_n = o(c_n) \ \boxed{ \blacksquare } \ a_n = o(c_n) \ e \ c_n = o(b_n) \ \boxed{ \blacksquare } \ c_n = o(b_n) \ \boxed{ \blacksquare
Quesito n. 4 \lim_{n\to+\infty} \frac{7n^{2n}+2(n!)^2}{3(\sqrt{n})^{3n}+5n^{\ln n}} è uguale a:
A \frac{7}{2} B + \infty C \frac{2}{2} D_0 E \frac{7}{5} F \frac{2}{5}
 Quesito n. 5 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln \left(1 + \frac{x}{3}\right)?
oxed{A} \ 1 \quad oxed{B} + \infty \quad oxed{C} \text{ non esiste} \quad oxed{D} \ 0 \quad oxed{E} \ 3 \quad oxed{F} \ e^3
Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)(1+\sin^2\frac{1}{x})}{\ln(1+\sin^2x)}
Quesito n. 7 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
 \boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \
Quesito n. 9 Si considerino le affermazioni:
Questro h. 9 Si considerino le afiern

(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;

(c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.

Allora quelle vere sono:
A tutte B solo (b) C solo (a) D solo (c) E nessuna F solo (a) e (c)
Quesito n. 10 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
  (c) (a<sub>n</sub>) è una successione crescente.
 Allora quelle vere sono:
A tutte B solo (a) e (b) C solo (c) D solo (a) E nessuna F solo (a) e (c)
Quesito n. 11 Sia C un sottoinsieme non vuoto di \mathbf R. Si considerino le affermazioni:

 (a) se C è chiuso allora è anche limitato;

(c) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
(c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C

(a) (b) e (c) sono tutte vere (a) e (b) e (c) sono false (c) (c) è vera e (a) e (b) sono false (a) (b) e (c) sono tutte false (b) è vera e (a) e (c) sono
false F 2 affermazioni sono vere ed una è falsa
Quesito n. 12 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
\boxed{\mathbf{A}}_{-1} \boxed{\mathbf{B}}_{\frac{1}{2}} \boxed{\mathbf{C}}_{-\frac{1}{2}} \boxed{\mathbf{D}}_{+\infty} \boxed{\mathbf{E}}_{0} \boxed{\mathbf{F}}_{1}
Quesito n. 13 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
A + \infty B = \frac{1}{2} C - \infty D non esiste in R^* E = 0
 Quesito n. 14 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni

 (a) 1 è un punto di accumulazione per A;

  (b) 1 è un punto di frontiera per A;
  (c) 1 è un punto interno per A.
 Allora quelle vere sono:
A solo (a) B solo (b) C nessuna D solo (c) E solo (a) e (c) F solo (a) e (b)
Quesito n. 15 Sia f(x) = \ln(1 + e^{x^2}). Calcolare f'(x).
Quesito n. 17 Il \lim_{x \to +\infty} \frac{2x \cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}} vale
```

 $\boxed{A} \stackrel{1}{\stackrel{}{_{\sim}}} \boxed{B} 2 \boxed{C} \sqrt{2} \boxed{D} 0 \boxed{E} \text{ non esiste} \boxed{F} + \infty$

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esoner	
Compito n.79 del test di preselezione per il I esonero Quesito n. 1 Il $\lim_{n \to +\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a:	Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha:	
$ \underline{A} b_n = o(a_n) e a_n = o(c_n) $ $ \underline{B} b_n = o(c_n) e c_n = o(a_n) $ $ \underline{C} c_n = o(a_n) e a_n = o(b_n) $ $ \underline{D} c_n = o(b_n) e b_n = o(a_n) $ Quesito n. 3 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A ; (b) 5 appartiene alla chiusura di A ; (c) 9 è un punto di accumulazione per A . Allora quelle vere sono:	$\boxed{\mathbf{E}} \ a_n = o(c_n)$ e $c_n = o(b_n)$ $\boxed{\mathbf{F}} \ a_n = o(b_n)$ e $b_n = o(c_n)$
A solo (b) B nessuna C solo (a) e (b) D tutte E solo (a) e (c) F solo (a)	
Quesito n. 4 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare $f'(x)$.	
Quesito n. 5 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale a:	
$f A$ non esiste in ${f R}^*$ $f B$ $+\infty$ $f C$ $\frac{1}{2}$ $f D$ $-\infty$ $f E$ 1 $f F$ 0	
Quesito n. 6 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora: Allora: (a) è vera e (b) e (c) sono false (a), (b) e (c) sono tutte false (a), (b) e (c) sono tutte vere (b) (c)	è vera e (a) e (b) sono false $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
una è falsa 🖺 (b) è vera e (a) e (c) sono false	
Quesito n. 7 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{n+2}\right)^{n+e}$ è uguale a:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
A solo (a) e (c) B solo (c) C solo (b) D solo (a) E nessuna F tutte Quesito n. 9 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette:	
(a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$	
(d) $a_n = O(b_n)$	
Quesito n. 10 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale	
$A \frac{1}{2} B \sqrt{2} C + \infty$ D non esiste $E 0 F 2$	
Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $ \underline{A} \ a_n = o(c_n)$ e $c_n = o(b_n)$ $ \underline{B} \ b_n = o(a_n)$ e $a_n = o(c_n)$ $ \underline{C} \ b_n = o(c_n)$ e $c_n = o(a_n)$ $ \underline{D} \ a_n = o(b_n)$ e $b_n = o(c_n)$ Quesito n. 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valoration is a significant of the properties of the propertie	$\label{eq:cn} \boxed{\mathbf{E}}\; c_n = o(a_n) \mathbf{e} a_n = o(b_n) \boxed{\mathbf{F}}\; c_n = o(b_n) \mathbf{e} b_n = o(a_n)$
Quesito n. 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valora $\boxed{A} x^2 \ln^2 x$ $\boxed{B} \left(\ln x^2\right)^{\ln x^2}$ $\boxed{C} 2x \ln x$ $\boxed{D} 2x^2 \ln x $ $\boxed{E} \left(\ln x\right)^{2 \ln x}$ $\boxed{F} \left(\ln^2 x\right)^{\ln^2 x}$	ori di x per i quali è definita, $f\circ g\circ h$ è uguale a
Quesito n. 13 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni:	
(a) $a_n = o\left(n^4\right)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono:	
A solo (a) e (c) B solo (a) e (b) C solo (a) D tutte E solo (c) F nessuna	
Quesito n. 14 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$	
$oxed{A}_1 oxed{B}_1 - rac{1}{2} oxed{C}_{+\infty} oxed{D}_{-1} oxed{E}_0 oxed{F}_{rac{3}{2}}$	
Quesito n. 16 Quanto vale il limite $\lim_{x\to+\infty} x \ln\left(1+\frac{1}{x+3}\right)$?	
A non esiste B 3 C 1 D $+\infty$ E 0 F e^3 Quesito n. 17 $\lim_{n\to+\infty} \frac{7n^{2n} + 2 (n!)^2}{3 (\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a:	
Quesito n. 17 $\lim_{n \to +\infty} \frac{m + 2 (n!)}{3 (\sqrt{n})^{3n} + 5 n^{\ln n}}$ è uguale a: A 0 B $\frac{7}{5}$ C $+\infty$ D $\frac{2}{3}$ E $\frac{2}{5}$ F $\frac{7}{3}$	
Nome: Nome: Matr: n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.3 n.14 n.15 n.16 n.17 A </td <td></td>	

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.80 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Quesito n. 1 Il \lim_{n \to +\infty} n \left( e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right) è uguale as
 A = \frac{1}{3} B_0 C_1 D = \frac{2}{3} E = \frac{1}{6} F_{+\infty}
 Quesito n. 2 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni (a) 1 è un punto di accumulazione per A;
   (b) 1 è un punto di frontiera per A;
   (c) 1 è un punto interno per A.
  Allora quelle vere sono:
 A solo (b) B solo (a) C solo (c) D solo (a) e (c) E solo (a) e (b) F nessuna
 Quesito n. 3 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
 Quesito n. 4 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
 \frac{\boxed{\mathbf{A}} \ \frac{1}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)} \quad \boxed{\mathbf{B}} \ 1+\frac{1}{x} \quad \boxed{\mathbf{C}} \ \frac{-x}{(x+1)\ln^2\left(1+\frac{1}{x}\right)} \quad \boxed{\mathbf{D}} \ \frac{1}{x^2\ln^2\left(1+\frac{1}{x}\right)} \quad \boxed{\mathbf{E}} \ -\frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{\mathbf{F}} \ -\frac{1}{x^2}\ln\left(1+\frac{1}{x}\right) }  Quesito n. 5 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
      (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
      (c) a_n = O(b_n)
      (d) a_n = o(b_n)
 oxed{A} solo (c) e (d) oxed{B} solo (a), (b) e (c) oxed{C} solo (c) oxed{D} solo (d) oxed{E} solo (b) e (c) oxed{F} nessuna
 \overline{\textbf{Quesito n. 6}} \ \ \text{Sia $A$ un sottoinsieme non vuoto di $\mathbf{R}$. Quali, tra le seguenti affermazioni, sono vere superiori superiori affermazioni, sono vere superiori affermazioni a
  (a) se A è aperto allora la sua frontiera è vuota;
   (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
  (\mathbf{c}) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione.
 A solo (a) B solo (b) C tutte D solo (b) e (c) E solo (c) F nessuna
 Quesito n. 7 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
 A = -1 B + \infty C = \frac{1}{2} D_0 = \frac{1}{2} F_1
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
  \boxed{ \boxed{ \boxed{A} } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ \boxed{E} } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ \boxed{C} } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ \boxed{D} } \ b_n = o(a_n) \ \ e \ a_n = o(b_n) \ \ e \ b_n = o(b_n) \ 
 Quesito n. 9 Si considerino le affermazioni:
(a) \ln(1+x) = o(x) per x \to 0;

(b) \ln(1-x) = -x + o(x) per x \to 0;

(c) \ln\left(1+\frac{1}{x}\right) \approx x per x \to +\infty.

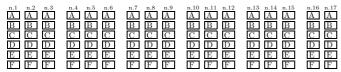
Allora quelle vere sono:
 A solo (a) B nessuna C solo (b) D solo (c) E tutte F solo (a) e (c)
 Quesito n. 10 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
 A non esiste B 3 \mathbb{C}_{+\infty} D -1 E 0 \mathbb{F}_{1}
  Quesito n. 11 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si ha:
  \boxed{ \textbf{A} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{C} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b
 Quesito n. 12 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)?
\boxed{A} - \frac{1}{5} \boxed{B} - \frac{2}{5} \boxed{C} + \infty \boxed{D} \frac{1}{5} \boxed{E} \frac{2}{5} \boxed{F} 0
 Quesito n. 14 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a
 Quesito n. 15 \overline{\lim_{x\to+\infty}} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}} vale
 A non esiste B 2 C \frac{1}{2} D 0 E + \infty F \sqrt{2}
                                                         \lim_{n \to +\infty} \frac{7 \ln(n+e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n} \quad \text{è uguale as}
 A_0 B_{\frac{7}{3}} C_{\frac{2}{5}} D_{\frac{2}{3}} E_{\frac{7}{5}} F_{+\infty}
 Quesito n. 17 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;
 (b) \lim_{n \to +\infty} a_n = +\infty;
  (c) (a_n) è una successione crescente
   Allora quelle vere sono:
 A nessuna B solo (a) C solo (a) e (c) D tutte E solo (a) e (b) F solo (c)
                                                                                                                                                                                                                        n.13 n.14 n.15
A A A
B B B
C C C C
D D D
E E E
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.81 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ **Quesito n. 1** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: Quesito n. 2 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$ Allora quelle vere sono: A solo (a) e (c) B solo (a) C tutte D nessuna E solo (b) F solo (c) Quesito n. 3 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $\boxed{A} \frac{2}{3} \boxed{B} 0 \boxed{C} \frac{1}{3} \boxed{D} + \infty \boxed{E} 1 \boxed{F} \frac{1}{6}$ Quesito n. 4 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!) \text{ per } n \to +\infty;$ (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) e (b) B solo (a) e (c) C tutte D nessuna E solo (a) F solo (c) Quesito n. 5 Il $\lim_{n \to +\infty} \left(e + \frac{1}{n^2} \right)^n$ è uguale a: A 1 B e C 2e D $+\infty$ E e+1 F e^e **Quesito n. 6** Sia C un sottoinsieme non vuoto di ${\bf R}.$ Si considerino le affermazioni: (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione $(a_n) \subset C$ converge; (c) se C è chiuso allora anche il suo complementare è chiuso A (b) è vera e (a) e (c) sono false B (a), (b) e (c) sono tutte vere C (a), (b) e (c) sono tutte false D 2 affermazioni sono vere ed una è falsa E (a) è vera e (b) e (c) sono false F (c) è vera e (a) e (b) sono false Quesito n. 7 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a Quesito n. 8 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$? A 1 B 3 $\mathbb{C}_{+\infty}$ D e^3 E 0 F non esiste Quesito n. 9 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}}$ $\boxed{A} \frac{7}{3} \boxed{B} + \infty \boxed{C} \frac{2}{3} \boxed{D} \frac{2}{5} \boxed{E} \frac{7}{5} \boxed{F} 0$ Quesito n. 10 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n\sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n)$ Quesito n. 11 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a: $\boxed{A} + \infty \quad \boxed{B} \quad \frac{3}{2} \quad \boxed{C} \text{ non esiste in } \mathbf{R}^* \quad \boxed{D} \quad \frac{1}{2} \quad \boxed{E} \quad 2 \quad \boxed{F} \quad 0$ Quesito n. 12 Il $\lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}}$ vale $A\sqrt{2}$ $B + \infty$ C 0 D 2 E non esiste $F = \frac{1}{2}$ Quesito n. 13 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x)Quesito n. 14 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 15 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (c) C nessuna D solo (a) E solo (b) F solo (a) e (c) Quesito n. 16 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$ $oxed{A} - 1 \quad oxed{B} \ 1 \quad \oxed{C} + \infty \quad oxed{D} \ 0 \quad oxed{E} - \infty \quad oxed{F} \text{ non esiste}$ Quesito n. 17 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale $A = B + \infty$ C = 1 D = 0 $E = \frac{1}{2}$ $E = \frac{3}{2}$ Compito n.81 Cognome:

| Nome: | Nome: | Matr: | Matr

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.82 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n!)^2$, $b_n = n^{2n}$ e $c_n = 2^{n^2}$, si ha: $\boxed{ \triangle } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \blacksquare } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n)$ $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ Quesito n. 2 $A = \frac{2}{5} B = \frac{2}{3} C + \infty D = \frac{7}{5} E = \frac{7}{3} E_0$ Quesito n. 3 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A; (b) 5 appartiene alla chiusura di A; (c) 9 è un punto di accumulazione per A Allora quelle vere sono: A solo (b) B solo (a) C solo (a) e (b) D solo (a) e (c) E nessuna F tutte Quesito n. 4 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale a: $\boxed{\mathbf{A}} \ \frac{1}{2} \quad \boxed{\mathbf{B}} \ \mathbf{1} \quad \boxed{\mathbf{C}} \ \mathbf{0} \quad \boxed{\mathbf{D}} \ \mathrm{non} \ \mathrm{esiste} \ \mathrm{in} \ \mathbf{R}^* \quad \boxed{\mathbf{E}} - \infty \quad \boxed{\mathbf{F}} + \infty$ Quesito n. 5 Sia C un sottoinsieme chiuso e non vuoto di $\mathbf R$. Si considerino le affermazioni: (a) in ogni caso C è compatto; (b) in ogni caso C contiene tutti i suoi punti di accumulazione: (c) in ogni caso C non ha punti interni. (a), (b) e (c) sono tutte vere (a) e (c) sono tutte vere (b) e (c) sono tutte false (c) (a) è vera e (b) e (c) sono false (b) è vera e (a) e (c) sono false (c) è vera e (a) e (b) sono false 🖺 2 affermazioni sono vere ed una è falsa Quesito n. 6 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). $\frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{B}} \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{\mathbf{C}} \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{D}} \frac{1}{\sqrt{6\sqrt{x}}}$ $\boxed{E} - \frac{1}{2\sqrt{1 + x\sqrt{x}}} \qquad \boxed{F} \frac{3\sqrt{x}}{4\sqrt{1 + x\sqrt{x}}}$ Quesito n. 7 Calcolare $\lim_{x \to 0^{\pm}} \frac{\ln(1+x^2) \sin \frac{1}{x}}{e^{x}}$ f A 1 $\f B$ $+\infty$ $\f C$ non esiste $\f D$ 3 $\f E$ 0 $\f F$ -1Quesito n. 8 Il $\lim_{n\to+\infty} e^n \ln (1+e^{-n})$ è uguale a: $A_0 = \frac{2}{3} + \infty$ $D_1 = \frac{1}{6} = \frac{1}{3}$ Quesito n. 9 Si considerino le affermazioni: (a) ln(1+x) = o(x) per x → 0; **(b)** $\ln(1-x) = -x + o(x) \text{ per } x \to 0$ (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono: A nessuna B solo (c) C solo (a) D solo (b) E tutte F solo (a) e (c) Quesito n. 10 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A 2 B non esiste $\mathbb{C} \frac{1}{2}$ $\mathbb{D} \sqrt{2}$ $\mathbb{E} 0$ $\mathbb{F} +\infty$ Quesito n. 11 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ Quesito n. 12 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ h \circ f$ è uguale a $\boxed{ \underline{\mathbf{A}} \, (\ln x)^{2 \ln x} \quad \underline{\mathbf{B}} \, x^2 \ln^2 x \quad \underline{\mathbf{C}} \, \left(\ln x^2\right)^{\ln x^2} \quad \underline{\mathbf{D}} \, 2x^2 \ln |x| } \quad \underline{\underline{\mathbf{E}} \, 2x \ln x \quad \underline{\mathbf{F}} \, \left(\ln^2 x\right)^{\ln^2 x} }$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \mathbf{E} } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \mathbf{C} } \ a_n = o(b_n) \quad \boxed{ \mathbf{C} } \ a_n = o(b_n) \quad \boxed{ \mathbf{D} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ b_n = o(a_n) \quad \boxed{ \mathbf{E} } \ a_n = o(c_n) \quad \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n)$ Quesito n. 14 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale A = 0 $B + \infty$ $C - \frac{1}{2}$ D - 1 $E = \frac{1}{2}$ E = 1Quesito n. 15 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln \left(1+\frac{x}{2}\right)$? $f A \ 1 \quad B + \infty \quad C \ 3 \quad D \text{ non esiste} \quad E \ 0 \quad F \ e^3$ Quesito n. 16 Il $\lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en}$ è uguale a Quesito n. 17 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono: A solo (a) e (b) B nessuna C solo (a) D tutte E solo (c) F solo (a) e (c) Nome: Matr: | n.10 | n.11 | n.12 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E | E | F | F | F | F | | n.13 | n.14 | n.15 | n.16 | n.17 |
A	A	A	A	A
B	B	B	B	
C	C	C	C	
D	D	D	D	
E	E	E	E	
F	F	F	F	
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9

 A
 A
 A
 A
 A
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B A A A B B B C C C C C D D D D D E E E E E


Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.83 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (a) C solo (b) D nessuna E solo (c) F solo (a) e (c) Quesito n. 2 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$ $A = \frac{2}{3}$ $B = \frac{4}{3}$ $D = \frac{4}{3}$ $E = \frac{8}{3}$ Quesito n. 4 Sia $f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}$. Calcolare f'(x). $\frac{\boxed{\mathbf{A}} - \frac{1}{x^2} \ln \left(1 + \frac{1}{x}\right) \quad \boxed{\mathbf{B}} \frac{-x}{(x+1) \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{\mathbf{C}} \ 1 + \frac{1}{x} \quad \boxed{\mathbf{D}} \frac{1}{x^2 \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{\mathbf{E}} - \frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{\mathbf{F}} \frac{1}{(x^2 + x) \ln^2 \left(1 + \frac{1}{x}\right)}$ $\boxed{\mathbf{Quesito n. 5}} \quad \text{Siano } f(x) = \ln(x), \ g(x) = x^2 \text{ e } h(x) = x^x, \ \text{dove } h(x) \text{ è definita solo per } x > 0. \ \text{Allora, per tutti i valori di } x \text{ per i quali è definita, } g \circ f \circ h \text{ è uguale a}$ $\boxed{ \textcolor{red}{\mathbf{A}} \ 2x^2 \ln |x| } \boxed{ \textcolor{red}{\mathbf{B}} \ (\ln x^2)^{\ln x^2} } \boxed{ \textcolor{red}{\mathbf{C}} \ x^2 \ln^2 x } \boxed{ \textcolor{red}{\mathbf{D}} \ (\ln x)^{2 \ln x} } \boxed{ \textcolor{red}{\mathbf{E}} \ (\ln^2 x)^{\ln^2 x} } \boxed{ \textcolor{red}{\mathbf{F}} \ 2x \ln x}$ Quesito n. 6 Il $\lim_{x\to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale $A = \frac{1}{2}$ $B + \infty$ C = 0 $D = \sqrt{2}$ E = non esiste E = 2Quesito n. 7 II $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale A_{-1} B_1 $C_{-\frac{1}{2}}$ $D_{\frac{1}{2}}$ E_0 $F_{+\infty}$ Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \textbf{A} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e} \ b_n = o(b_n)$ Quesito n. 9 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n\in\mathbb{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) e (c) B solo (a) e (b) C solo (a) D solo (c) E tutte F nessuna Quesito n. 10 II $\lim_{n\to +\infty} n\left(e^{\frac{2}{n}} - e^{\frac{2}{n}}\right)$ è uguale a: $A = \frac{1}{6} B_0 C = \frac{2}{3} D_1 E = \frac{1}{3} E_{+\infty}$ Quesito n. 11 $\lim_{n \to +\infty} \frac{7 \ln(n + e^n) + 2\sqrt{n}}{3 \sqrt[2]{n!} + 5n}$ $\overline{\mathbf{Quesito}}$ n. 12 Sia C un sottoinsieme non vuoto di \mathbf{R} . Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora: A (a), (b) e (c) sono tutte vere (a) è (c) sono false (b) è vera e (a) e (b) è vera e (a) e (c) sono false (b) 2 affermazioni sono vere ed una è falsa (c) è vera e (a) e (b) sono false F (a), (b) e (c) sono tutte false Quesito n. 13 Quanto vale il limite $\lim_{x\to +\infty} x \ln \left(1+\frac{1}{x+3}\right)$? $A e^3 B 3 C \text{ non esiste } D 0 E 1 F + \infty$ Quesito n. 14 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x) \text{ per } x \to 0$ (c) $\sin x \approx \tan x \text{ per } x \to 0$ Allora quelle vere sono: $oxed{\mathbb{A}}$ solo (b) $oxed{\mathbb{B}}$ solo (a) $oxed{\mathbb{C}}$ solo (c) $oxed{\mathbb{D}}$ tutte $oxed{\mathbb{E}}$ solo (a) e (c) $oxed{\mathbb{F}}$ nessuna $oxed{\mathbf{Quesito}}$ n. 15 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$

 \overline{A} solo (d) \overline{B} solo (b) e (c) \overline{C} solo (a), (b) e (c) \overline{D} solo (c) \overline{E} nessuna \overline{F} solo (c) e (d)

Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:

 $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E} \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ C} \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ D} \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ E} \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ E} \ b_n = o(a_n) \ e \ a_n = o(c_n) \ e \ a_n = o(c_n)$

Quesito n. 17 Il $\lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)^{n+\pi}$ è uguale a:

${\small \begin{array}{c} {\rm Analisi\; Matematica\; I\; per\; I} \\ {\rm \bf Compito\; n.84\; del\; test\; di\; preselezione\; per\; il\; I\; esonero \end{array}}}$	ig. Edilizia ed Edile-Arch Test di Preselezione per il I Es		Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Sia C un sottoinsieme non vuoto di $\mathbf R$. Si considerin	o le affermazioni:	1 unicygi. Grasio-2, 1101	
 (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione (a_n) ⊂ C converge; (c) se C è chiuso allora anche il suo complementare è chiuso. Allora: 			
$\boxed{\mathbb{A}}$ (b) è vera e (a) e (c) sono false $\boxed{\mathbb{B}}$ 2 affermazioni sono vere e sono false $\boxed{\mathbb{E}}$ (a), (b) e (c) sono tutte vere	una è falsa (a), (b) e (c) sono tutte false	(a) è vera e (b) e (c) sono false	E (c) è vera e (a) e (b)
Quesito n. 2 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale			
$\boxed{ \begin{tabular}{c ccccccccccccccccccccccccccccccccccc$			
Quesito n. 3 Si considerino le affermazioni: (a) $\sin x - x = o(x)$ per $x \to 0$;			
(b) $\sin x \approx x \text{ per } x \to 0;$ (c) $\frac{\sin x}{x} \to 0 \text{ per } x \to +\infty.$			
Allora quelle vere sono: $\boxed{\textbf{A}}$ solo (b) $\boxed{\textbf{B}}$ solo (a) e (c) $\boxed{\textbf{C}}$ solo (a) $\boxed{\textbf{D}}$ solo (c) $\boxed{\textbf{E}}$ ne			
Quesito n. 4 Il $\lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en}$ è uguale a:	ssuna Litutte		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\boxed{ \triangle e^{\sqrt{2+x^2}} \boxed{ \mathbb{B} } \ 2xe^{\sqrt{2+x^2}} \boxed{ \mathbb{C} } \ e^{\frac{x}{\sqrt{2+x^2}}} \boxed{ \mathbb{D} } \ \frac{e^{\sqrt{2+x^2}}}{2\sqrt{2+x^2}} \boxed{ \mathbb{E} } \ 2xe^{2\sqrt{2+x^2}}$	$\frac{1}{1+x^2}$ F $\frac{xe^{\sqrt{2}+x^2}}{\sqrt{2}+x^2}$		
Quesito n. 6 Il $\lim_{n \to +\infty} n\left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a:			
$A + \infty$ $B \frac{1}{3}$ $C \frac{2}{3}$ D_0 $E \frac{1}{6}$ F_1			
Quesito n. 7 Date le successioni $(a_n),(b_n)$ e (c_n) definite da $a_n=$	10		
	$o(b_n)$ e $b_n = o(c_n)$ $D b_n = o(c_n)$ e $c_n = o(a_n)$) $\mathbf{E} c_n = o(b_n) \in b_n = o(a_n) \mathbf{F} a_n$	$=o(c_n)$ e $c_n=o(b_n)$
	$o(b_n)$ e $b_n = o(a_n)$ $b_n = o(a_n)$ e $a_n = o(c_n)$) è definita solo per $x > 0$. Allora, per tutti i va) E $c_n = o(a_n)$ e $a_n = o(b_n)$ E b_n dori di x per i quali è definita, $f \circ h \circ g$	$= o(c_n)$ e $c_n = o(a_n)$ è uguale a
	$(x^2)^{\ln x^2} \boxed{\mathbf{F}} \ 2x \ln x$		
Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100 \\ n & \text{per } n > 100 \end{cases}$	Si considerino le affermazioni:		
(a) $a_n = o\left(n^4\right)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono:			
A solo (a) e (c) B solo (a) C solo (c) D tutte E solo	a) e (b) F nessuna		
Quesito n. 11 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right)$ vale			
$A - 1 B 0 C - \frac{1}{2} D + \infty E \frac{3}{2} F 1$			
Quesito n. 12 Sia $A=(-\infty,0)\cup\left\{2^{-n}\;\middle \;n\in\mathbf{N}\right\}$. Si considerino (a) 0 è un punto di accumulazione per A ; (b) -2 è un punto di accumulazione per A ; (c) 2^{-100} è un punto di accumulazione per A . Allora quelle vere sono:	e affermazioni:		
Atutte B solo (a) C solo (a) e (b) D solo (b) E ness	ma F solo (a) e (c)		
Quesito n. 13 II $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a:			
\triangle non esiste in \mathbb{R}^* \triangle \mathbb{B} 2 \triangle 0 \mathbb{D} $+\infty$ \mathbb{E} $\frac{3}{2}$ \mathbb{F} $\frac{1}{2}$			
Quesito n. 14 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\mathbb{A}_{+\infty} \mathbb{B} \frac{2}{3} \mathbb{C} \frac{7}{5} \mathbb{D} \frac{2}{5} \mathbb{E} \frac{7}{3} \mathbb{F}_0$			
Quesito n. 16 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$?			
` '			
	i delle seguenti affermazioni sono corrette:		
(a) $a_n \approx b_n \text{ per } n \to +\infty;$			
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$			
(c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$			
$oxed{A}$ solo (b) e (c) $oxed{B}$ solo (c) e (d) $oxed{C}$ solo (d) $oxed{D}$ solo (a), (b)	e (c) E nessuna F solo (c)		
Compito n.84 Cognome: Nome:	Matr:		

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.85 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) (a_n) è una successione crescente Allora quelle vere sono A solo (c) B tutte C solo (a) D nessuna E solo (a) e (b) F solo (a) e (c) Quesito n. 2 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a $\boxed{ \textbf{A} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{C} } \left(\ln^2 x \right)^{\ln^2 x} \quad \boxed{ \textbf{D} } \ 2x \ln x \quad \boxed{ \textbf{E} } \ x^2 \ln^2 x \quad \boxed{ \textbf{F} } \left(\ln x \right)^{2 \ln x}$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n \sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ e \ c_n = o(a_n) \ \ \boxed{ E } \ c_n = o(a_n) \ \ e \ c_n = o(b_n) \ \ \boxed{ E } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \ \ \boxed{ E } \ c_n = o(b_n) \ \ \boxed{ E } \$ Quesito n. 4 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ $A + \infty$ B 0 C non esiste D - 1 E 1 $F - \infty$ Quesito n. 5 Il $\lim_{x\to 1} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale $A_1 B_{-1} C_{-\frac{1}{2}} D_0 E_{\frac{1}{2}} F_{+\infty}$ Quesito n. 6 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). Quesito n. 7 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (a) e (c) B solo (a) C solo (b) D nessuna E tutte F solo (c) $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} \quad \text{è uguale a:}$ $A \frac{7}{3} B \frac{2}{5} C \frac{2}{3} D_0 E_{+\infty} F \frac{7}{5}$ Quesito n. 9 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)$? Quesito n. 10 Date $a_n = \frac{1}{n^2}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 11 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (c) B solo (a) e (b) C solo (a) e (c) D nessuna E solo (a) F solo (b) Quesito n. 12 Il $\lim_{x\to+\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}}$ vale $A = \frac{1}{2}$ B non esiste C = 0 D $+\infty$ E 2 F $\sqrt{2}$ Quesito n. 13 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $A - \frac{1}{5} B + \infty C_0 D_{\frac{2}{5}} E_{\frac{1}{5}} F - \frac{2}{5}$ Quesito n. 14 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) in ogni caso C è compatto;
(b) in ogni caso C contiene tutti i suoi punti di accumulazione;
(c) in ogni caso C non ha punti interni. A (a), (b) e (c) sono tutte vere (b) (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte false (b) 2 affermazioni sono vere ed una è falsa (c) è vera e (a) e (b) sono false F (a) è vera e (b) e (c) sono false Quesito n. 15 Il $\lim_{n \to +\infty} \left(e + \frac{1}{n^2} \right)^n$ è uguale a: $A e + 1 \quad B + \infty \quad C \quad D e^e \quad E \quad e \quad F \quad 2e$ Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n-1}$, $b_n = 3^n$ e $c_n = 2^n$, si ha:

Quesito n. 16 bate is successful (a_n) , $(b_n) \in (c_n)$ definite of $a_n = (1 + \frac{1}{n})^n$, $b_n = 3 \in c_n = 2$, since. $\boxed{A} \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{E} \ b_n = o(b_n) \in b_n = o(a_n) \quad \boxed{C} \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{D} \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in a_n = o(b_n) \quad \boxed{E} \ b_n = o(a_n) \in$

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.86 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
 \boxed{ \boxed{ \mathbb{A} } \frac{-x}{(x+1)\ln^2\left(1+\frac{1}{x}\right)} \quad \boxed{ \boxed{ \mathbb{B} } -\frac{1}{x^2} - \frac{1}{x^3} \quad \boxed{ \boxed{ \mathbb{C} } 1 + \frac{1}{x} \quad \boxed{ \boxed{ \boxed{ \boxed{ } } \frac{1}{(x^2+x)\ln^2\left(1+\frac{1}{x}\right)}} \quad \boxed{ \boxed{ \mathbb{E} } -\frac{1}{x^2}\ln\left(1+\frac{1}{x}\right) \quad \boxed{ \boxed{ \boxed{ \mathbb{F} } \frac{1}{x^2\ln^2\left(1+\frac{1}{x}\right)}} } } 
Quesito n. 2 Il \lim_{n \to \infty} n\left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
A_{\frac{3}{3}} B_1 C_{\frac{1}{6}} D_0 E_{\frac{1}{3}} F_{+\infty}
Quesito n. 3 \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} è uguale a:
A \frac{7}{3} B \frac{7}{5} C + \infty D_0 E \frac{2}{3} F \frac{2}{5}
Quesito n. 4 \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
A - \frac{1}{3} B - \frac{1}{2} C_0 D_{-1} E_{-\infty} F_1
      \textbf{Quesito n. 5} \  \, \text{Siano} \, f(x) = \ln(x), \, g(x) = x^2 \, \, \text{e} \, h(x) = x^x, \, \text{dove} \, h(x) \, \, \text{è definita solo per} \, x > 0. \, \, \text{Allora, per tutti i valori di } x \, \text{per i quali è definita,} \, g \circ h \circ f \, \, \text{è uguale a longer} \, h(x) = x^2 \, \, \text{e} \, h(x) = x^2 \, \,
Quesito n. 6 Si considerino le affermazioni:
(a) \ln(1+x) = o(x) \text{ per } x \to 0;

(b) \ln(1-x) = -x + o(x) \text{ per } x \to 0;
(c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
 Allora quelle vere sono
A solo (b) B nessuna C solo (c) D solo (a) e (c) E tutte F solo (a)
 Quesito n. 7 Sia A = [-3,3] \cap \mathbf{Q}. Si considerino le affermazioni:
  (a) 0 è un punto interno per A:
  (b) 0 è un punto di accumulazione per A;
  (c) \sqrt{3} è un punto interno per A.
  Allora quelle vere sono:
A solo (a) e (c) B nessuna C solo (a) D solo (b) E tutte F solo (a) e (b)
Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si ha:
 \boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ \bigcirc } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \square } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) 
Quesito n. 9 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni:

 (a) il complementare di C è sempre aperto;

  (b) in ogni caso C contiene la sua frontiera:
  (c) C può avere punti isolati.
  Allora:
(a) (b) e (c) sono tutte vere (a) e (b) e (c) sono false (c) affermazioni sono vere ed una è falsa (d) (c) è vera e (a) e (b) sono false (d) (c) sono
tutte false E (b) è vera e (a) e (c) sono false
Quesito n. 10 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) per n \to +\infty;
  (b) a_n = o(n^2) per n \to +\infty
 (c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
A tutte B solo (c) C solo (a) e (c) D solo (a) E solo (a) e (b) F nessuna
Quesito n. 11 Il \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}
A_3 B_{\frac{3}{4}} C_{\frac{1}{4}} D_{-\infty} E_{\frac{1}{2}} F_{-1}
Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[5]{n} e c_n = \ln n, si ha:
 \boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } 
Quesito n. 13 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}} vale
A\sqrt{2} B\frac{1}{2} C 0 D 2 E +\infty F non esiste
Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}
f A \ 0 \quad f B \ 1 \quad f C \ -1 \quad f D \ -\infty \quad f E \ non \ esiste \quad f F \ +\infty
Quesito n. 15 Quanto vale il limite \lim_{x\to +\infty} x^2 \ln \left(1+\frac{3}{x}\right)?
Quesito n. 16 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi} è uguale a:
A e^{-e+\pi} B_0 C_1 D_e^{\frac{1}{e}} E_e F_{e^{-\pi}}
Quesito n. 17 Date a_n = \frac{1}{n + (-1)^n}
                                                                                                                                                                                             Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
A solo (d) B solo (c) e (d) C nessuna D solo (a), (b) e (c) E solo (c) F solo (b) e (c)
```

B B C C C D D F F F

n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E

| N.1 | N.2 | N.3 | N.4 | N.4 | N.5 | N.5

 n.4
 n.5
 n.6

 A
 A
 A

 B
 B
 B

 C
 C
 C

 D
 D
 D

 E
 E
 E

 F
 F
 F

Quesito n. 17 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$
$e^{\omega} - 1$
$oxed{A}$ non esiste $oxed{B} - 1$ $oxed{C}$ 0 $oxed{D}$ 1 $oxed{E}$ $-\infty$ $oxed{F}$ $+\infty$
Compite n.87 Cognome: Nome: Matr: n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 n.17 A <t< td=""></t<>

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.88 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                         Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Il \lim_{n \to +\infty} n \left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a
A = \frac{1}{3} B_1 C_0 D = \frac{2}{3} E = \frac{1}{6} F + \infty
Quesito n. 2 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x)
\boxed{\mathbf{A}-\frac{1}{x^2}-\frac{1}{x^3}} \quad \boxed{\mathbf{B}} \ 1+\frac{1}{x} \quad \boxed{\mathbf{C}} -\frac{1}{x^2} \ln \left(1+\frac{1}{x}\right) \quad \boxed{\mathbf{D}} \ \frac{1}{x^2 \ln^2 \left(1+\frac{1}{x}\right)} \quad \boxed{\mathbf{E}} \ \frac{1}{\left(x^2+x\right) \ln^2 \left(1+\frac{1}{x}\right)}
Quesito n. 3 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)?
A non esiste Be^3 C+\infty D_1 E_0 F_3
Quesito n. 4 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
A = \frac{1}{2} B = 1 C + \infty D - \frac{1}{2} E - 1 E = 0
Quesito n. 5 Il \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a
A_{8} B_{\frac{8}{3}} C_{2} D_{4} E_{\frac{2}{3}} F_{\frac{4}{3}}
Quesito n. 6 II \lim_{x \to +\infty} \frac{3}{3x + \sqrt{1 + 2x^4}} \frac{3}{3x + \sqrt{1 + 2x^4}} vale
A non esiste B + \infty C\sqrt{2} D_0 E \frac{1}{2} F_2
Quesito n. 7 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ f \circ h è uguale a
\begin{tabular}{ll} \hline $\mathbf{A}$ & $(\ln^2 x)^{\ln^2 x}$ & $\mathbf{B}$ & $2x^2 \ln |x|$ & $\mathbf{C}$ & $(\ln x^2)^{\ln x^2}$ & $\mathbf{D}$ & $x^2 \ln^2 x$ & $\mathbf{E}$ & $(\ln x)^{2 \ln x}$ & $\mathbf{F}$ & $2x \ln x$ \\ \hline \end{tabular}
Quesito n. 8 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere?
 (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
 (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
A solo (a) B solo (b) C solo (c) D nessuna E solo (b) e (c) F tutte
Quesito n. 9 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}
A = \begin{bmatrix} A & 1 \end{bmatrix} \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} C & -1 \end{bmatrix} \begin{bmatrix} D & \text{non esiste} \end{bmatrix} \begin{bmatrix} E & +\infty \end{bmatrix} \begin{bmatrix} F & -\infty \end{bmatrix}
 Quesito n. 10 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si haz
 \boxed{ \triangle } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \quad \boxed{ E} \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ C} \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ D} \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \quad \boxed{ E} \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \quad \boxed{ E} \ b_n = o(a_n) \quad \boxed{ E}
 Quesito n. 11 Si considerino le affermazioni:
 (a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;
 (c) e^x - 1 = x + o(x) \text{ per } x \to +\infty.
 Allora quelle vere sono:
A nessuna B solo (c) C solo (a) e (c) D solo (b) E solo (a) F solo (b) e (c)
Quesito n. 12 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:

(a) 0 è un punto di accumulazione per A;
(b) -2 è un punto di accumulazione per A;
(c) 2<sup>-100</sup> è un punto di accumulazione per A.

 Allora quelle vere sono:
A nessuna B tutte C solo (a) e (b) D solo (b) E solo (a) e (c) F solo (a)
Quesito n. 13 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
Quesito n. 14 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
oxed{A} solo (d) oxed{B} nessuna oxed{C} solo (b) e (c) oxed{D} solo (c) e (d) oxed{E} solo (a), (b) e (c) oxed{F} solo (c)
 Quesito n. 15 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
Quesito n. 16 \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}
\boxed{A}_{+\infty} \boxed{B}_{\frac{7}{3}} \boxed{C}_{\frac{2}{5}} \boxed{D}_{\frac{2}{3}} \boxed{E}_{0} \boxed{F}_{\frac{7}{5}}
Quesito n. 17 Il \lim_{n\to+\infty} \left(1+\frac{\pi}{n^2}\right)^{en} è uguale a:
A e^2 B 1 C e^{\pi} D e^{e+\pi} E e^{e\pi} F + \infty
```

Compito n.88	Cognome:		Nome	::		Matr:	
n.1 n.2 n.3 A A A B B B B C C C C D D D D E E E E	n.4 n.5 n.6 A A A B B B B C C C C D D D E E E E F F F	n.7 n.8 n.9 A A A B B B C C C D D D E E E F F F	n.10 n.11 n.12 A A A B B B C C C D D D E E E F F F	n.13 n.14 n.15 A A A B B B B C C C C D D D E E E E F F F	n.16 n.17 A A A B B B C C D D E E F F		

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.89 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Calcolare $\lim_{x\to 0^+} \frac{(e^x-1)(1+\sin^2\frac{1}{x})}{\frac{1-(1-x)^2}{2}}$ $A - \infty$ B - 1 $C \cdot 1$ $D + \infty$ $E \cdot non \cdot esiste$ $E \cdot 0$ Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[8]{n}$ e $c_n = \ln n$, si ha: $\boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \\ \boxed{ \underline{\mathbf{C}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \\ \boxed{ \underline{\mathbf{C}} } \ a_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n)$ Quesito n. 3 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ h \circ f$ è uguale a $\lim_{n\to +\infty} \frac{7n^n+2\cdot n!}{3e^{n\ln n}+5e^{\ln^2 n}}$ Quesito n. 4 $\boxed{\mathbb{A}_{+\infty}} \quad \boxed{\mathbb{B}} \frac{2}{5} \quad \boxed{\mathbb{C}} \frac{2}{3} \quad \boxed{\mathbb{D}}_{0} \quad \boxed{\mathbb{E}} \frac{7}{5} \quad \boxed{\mathbb{F}} \frac{7}{3}$ Quesito n. 5 Il $\lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}}$ vale $A\sqrt{2}$ $B\frac{1}{2}$ C non esiste $D+\infty$ E 2 F 0 Quesito n. 6 Il $\lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right)$ è uguale a $A_0 = \frac{1}{3} = \frac{2}{3} = \frac{1}{6} = 1 = 1 + \infty$ Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^{n}$, $b_n = 3^n$ e $c_n = 2^n$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \boxdot } \ a_n = o(c_n) \ e \ a_n = o(b_n) \quad \boxed{ \boxdot } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ \varTheta } \ a_n = o(c_n) \quad \boxed{ \varTheta } \ a_n = o(a_n) \quad \boxed{ \varTheta } \ a_n = o(a_n) \quad \boxed{ \varTheta } \ a_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(a_n) \quad \boxed{ \blacksquare$ Quesito n. 8 Si considerino le affermazioni: (a) $\sin x - x = o(x)$ per $x \to 0$; (b) $\sin x \approx x$ per $x \to 0$; (c) $\frac{\sin x}{x} \to 0 \text{ per } x \to +\infty$ Allora quelle vere sono: A solo (a) B nessuna C solo (b) D tutte E solo (a) e (c) F solo (c) Quesito n. 9 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+x} \right)$ vale $A_0 \xrightarrow{B_0} C_{-\frac{1}{2}} D_{-1} \xrightarrow{E_{+\infty}} F_1$ Quesito n. 10 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x). Quesito n. 11 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (c) e (d) $oxed{B}$ solo (a), (b) e (c) $oxed{C}$ solo (d) $oxed{D}$ solo (c) $oxed{E}$ solo (b) e (c) $oxed{F}$ nessuna Quesito n. 12 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni (a) in ogni caso C è compatto; (b) in ogni caso ${\cal C}$ contiene tutti i suoi punti di accumulazione (c) in ogni caso C non ha punti interni. (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (c) e (a), (b) e (c) sono tutte vere (d) (e) e (c) sono false (e) è vera e (a) e (b) sono false $\overline{\mathbb{F}}$ 2 affermazioni sono vere ed una è falsa Quesito n. 13 Quanto vale il limite $\lim_{n \to \infty} x^2 \ln \left(1 + \frac{3}{x}\right)$? $\boxed{A} \ 1 \quad \boxed{B} + \infty \quad \boxed{C} \ 3 \quad \boxed{D} \ e^3 \quad \boxed{E} \ 0 \quad \boxed{F} \text{ non esiste}$ Quesito n. 14 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono A solo (a) B solo (a) e (c) C tutte D nessuna E solo (a) e (b) F solo (c) Quesito n. 15 Il $\lim_{n\to+\infty} \left(e + \frac{1}{n^2}\right)$ è uguale a: $A + \infty$ B e C 2e D 1 $E e^e$ F e + 1 Quesito n. 16 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (c) B solo (a) e (c) C solo (a) e (b) D solo (b) E solo (a) F nessuna Quesito n. 17 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a A 2 B non esiste in \mathbb{R}^* C 1 D $\frac{1}{2}$ E 0 F $+\infty$

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.17

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.90 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette: Quesito n. 1 Date $a_n = \frac{1}{n + (-1)^n}$ (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (c) e (d) $oxed{B}$ solo (a), (b) e (c) $oxed{C}$ solo (c) $oxed{D}$ solo (b) e (c) $oxed{E}$ solo (d) $oxed{F}$ nessuna $\overline{\textbf{Quesito n. 2}} \ \ \text{Sia A un sottoinsieme aperto e non vuoto} \ \overline{\textbf{di R.}} \ \ \text{Si considerino le affermazioni:}$ (a) A è sempre un intervallo; (b) A non ha mai punti isolati; (c) il complementare di A è sempre chiuso Àllora: (a) è vera e (b) e (c) sono false (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte vere (a) e (b) sono false F 2 affermazioni sono vere ed una è falsa Quesito n. 3 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni (a) 0 è un punto interno per A; (b) $0 \stackrel{.}{\text{e}}$ un punto di accumulazione per A; (c) $\sqrt{3} \stackrel{.}{\text{e}}$ un punto interno per A. Allora quelle vere sono: A nessuna B tutte C solo (a) e (b) D solo (a) E solo (b) F solo (a) e (c) Quesito n. 4 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)$? A non esiste B 0 C 1 D 3 E e^3 F $+\infty$ Quesito n. 5 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$ A = -1 B = 0 C = 1 $D = -\infty$ $E = -\infty$ $E = -\infty$ F non esiste Quesito n. 6 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha: $\boxed{ \textbf{A} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} \left(\ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{C} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{D} } \left(\ln x \right)^{2 \ln x} \quad \boxed{ \textbf{E} } \ 2x \ln x \quad \boxed{ \textbf{F} } \ x^2 \ln^2 x$ **Quesito n. 8** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \bigcirc } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ \square } \ a_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \blacksquare } \ c_n = o(a_n) \quad$ Quesito n. 9 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale $\boxed{\mathbf{A}}_{+\infty}$ $\boxed{\mathbf{B}}_{\frac{1}{2}}$ $\boxed{\mathbf{C}}_{0}$ $\boxed{\mathbf{D}}_{-1}$ $\boxed{\mathbf{E}}_{1}$ $\boxed{\mathbf{F}}_{-\frac{1}{2}}$ Quesito n. 10 Si considerino le affermazioni: (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A nessuna B solo (a) C solo (c) D solo (b) E solo (b) e (c) F solo (a) e (b) Quesito n. 11 Il $\lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}$ è uguale a: $A = \frac{1}{2}$ $B = \frac{1}{4}$ $C = \frac{3}{4}$ $D = \infty$ E = 1 E = 3Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ è uguale a $A_0 B_{+\infty} C_{\frac{2}{5}} D_{\frac{7}{5}} E_{\frac{7}{3}} F_{\frac{2}{3}}$ Quesito n. 13 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). $A = \frac{1}{6} = \frac{2}{3} = C_1 = D_{+\infty} = \frac{1}{3} = C_0$ Quesito n. 15 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!) \text{ per } n \to +\infty;$

(b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$

Allora quelle vere sono:

A solo (a) e (b) B solo (a) e (c) C nessuna D solo (c) E tutte F solo (a)

Quesito n. 16 Il $\lim_{n \to +\infty} \left(1 - \frac{1}{en}\right)^{en+\pi}$ è uguale a:

 $A e B e^{-\pi} C 1 D 0 E \frac{1}{e} F e^{-e+\pi}$

Quesito n. 17 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale

A non esiste B 2 C 0 D $\sqrt{2}$ E $\frac{1}{2}$ F $+\infty$

..... Matr:.... A A A B B B B C C C C D D D D A A A B B B C C C C D D D D

 \overline{A} solo (c) e (d) \overline{B} solo (b) e (c) \overline{C} solo (c) \overline{D} solo (a), (b) e (c) \overline{E} solo (d) \overline{F} nessuna

(d) $a_n = o(b_n)$

www.problemisvolti.it

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.92 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a Quesito n. 2 Calcolare $\lim_{x\to 0^+} \frac{\left(e^x-1\right)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=n^{100}$, $b_n=2^n$ e $c_n=100^{\sqrt{n}}$, si ha: $\boxed{ \textbf{A} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{D} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n$ Quesito n. 4 Si considerino le affermazioni: (a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$ (c) $e^x - 1 = x + o(x)$ per $x \to +\infty$ Allora quelle vere sono: A solo (b) e (c) B nessuna C solo (b) D solo (a) E solo (a) e (c) F solo (c) Quesito n. 5 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a: $A\sqrt{e}$ Be^2 $C+\infty$ De E1 Fe^e Quesito n. 6 $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2} - \sqrt{x^3+1} \right)$ vale A 1 B $+\infty$ C 0 D -1 E $\frac{1}{2}$ F $-\frac{1}{2}$ Quesito n. 7 Quanto vale il limite $\lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)$? A non esiste B 1 C 3 D 0 E $+\infty$ F e^3 Quesito n. 8 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $\sup_{n \in \mathbb{N}} a_n = +\infty;$ (b) $\lim_{n\to+\infty} a_n = +\infty;$ (c) (a_n) è una successione crescente. Allora quelle vere sono: A solo (a) e (b) B solo (a) C tutte D solo (a) e (c) E nessuna F solo (c) Quesito n. 9 Il $\lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right)$ è uguale a: $\mathbb{A} \frac{2}{3} \mathbb{B}_1 \mathbb{C} \frac{1}{3} \mathbb{D}_0 \mathbb{E} \frac{1}{6} \mathbb{F}_{+\infty}$ Quesito n. 10 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A; (b) 0 è un punto di accumulazione per A; (c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono: A solo (a) e (b) B solo (a) C solo (b) D tutte E nessuna F solo (a) e (c) Quesito n. 11 Sia A un sottoinsieme non vuoto di R. Quali, tra le seguenti affermazioni, sono vere (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione A solo (c) B tutte C solo (b) e (c) D solo (b) E solo (a) F nessuna Quesito n. 12 II $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a: A non esiste in \mathbb{R}^* B 2 C 1 D 0 E $+\infty$ F $\frac{1}{2}$ Quesito n. 13 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ A nessuna B solo (c) e (d) C solo (d) D solo (b) e (c) E solo (c) F solo (a), (b) e (c) **Quesito n. 14** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \boxdot } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \boxdot } \ a_n = o(b_n) \quad \boxed{ \boxdot } \ b_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ \boxdot } \ a_n = o(b_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(b_n) \quad$ $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ Quesito n. 15 è uguale a: $A_{+\infty}$ $B_{\frac{7}{5}}$ $C_{\frac{2}{3}}$ $D_{\frac{2}{5}}$ E_0 $F_{\frac{7}{3}}$ Quesito n. 16 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). $\frac{ [\underline{\mathbf{A}}] \ \frac{1}{2xe^{2x}} \quad [\underline{\mathbf{B}}] \ \frac{2xe^{x^2}}{1+e^{x^2}} \quad [\underline{\mathbf{C}}] \ \frac{1}{1+e^{x^2}} \quad [\underline{\mathbf{D}}] \ \frac{e^{x^2}}{1+e^{x^2}} \quad [\underline{\mathbf{E}}] \ \frac{e^{2x}}{1+e^{x^2}} \quad [\underline{\mathbf{F}}] \ \frac{1}{1+e^{2x}} \\ \mathbf{Quesito n.} \ \ \mathbf{17} \ \mathrm{II} \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1+4x^4}} \ \ \text{vale}$ A 2 B $\frac{1}{2}$ C $+\infty$ D 0 E non esiste F $\sqrt{2}$ Matr: Nome:

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.1

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.93 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                   Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
\boxed{A} 3 \cos^2\left(\frac{1}{x}\right) \qquad \boxed{B} \frac{3}{x} \cos^2\left(\ln x\right) \qquad \boxed{C} 3 \sin^2\left(\ln x\right) \cos\left(\ln x\right) \qquad \boxed{D} \frac{3}{x} \sin^2\left(\ln x\right) \cos\left(\ln x\right) \qquad \boxed{E} \cos^3\left(\ln x\right) \qquad \boxed{E} \sin^3\left(\frac{1}{x}\right)
Quesito n. 2 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
oxed{\mathbb{A}} solo (c) e (d) oxed{\mathbb{B}} solo (b) e (c) oxed{\mathbb{C}} nessuna oxed{\mathbb{D}} solo (a), (b) e (c) oxed{\mathbb{E}} solo (d)
Quesito n. 3 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
\boxed{\mathbf{A}} \frac{1}{5} \quad \boxed{\mathbf{B}} - \frac{1}{5} \quad \boxed{\mathbf{C}} - \frac{2}{5} \quad \boxed{\mathbf{D}} \quad \mathbf{0} \quad \boxed{\mathbf{E}} \quad \frac{2}{5} \quad \boxed{\mathbf{F}} + \infty
Quesito n. 4 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni
  (a) 1 è un punto di accumulazione per A:
  (b) 1 è un punto di frontiera per A;
(c) 1 è un punto interno per A. Allora quelle vere sono:
A solo (a) e (c) B nessuna C solo (c) D solo (b) E solo (a) e (b) F solo (a)
Quesito n. 5 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (2n)!, b_n = (n+1)^n e c_n = n^{n+1}, si has
 \boxed{ \triangle } \ c_n = o(a_n) \ \ \mathbf{e} \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ c_n = o(a_n) \ \ \mathbf{e} \ c_n = o(a_n) \ \ \mathbf{E} \ \ b_n = o(a_n) \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \mathbf{E} \ \ \mathbf{E} \ \ \ \mathbf{E} \ \ \mathbf{E} \ \ \mathbf{E} \ \
Quesito n. 6 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
A + \infty B 0 C \text{ non esiste} D 1 E - 1 F
Quesito n. 7 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ g \circ h è uguale a
 \boxed{ \textbf{A} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ 2x \ln x \quad \boxed{ \textbf{C} } \ x^2 \ln^2 x \quad \boxed{ \textbf{D} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{E} } \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textbf{F} } \left( \ln^2 x \right)^{\ln^2 x} 
Quesito n. 8 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
(a) a_n = o(n!) \text{ per } n \to +\infty;

(b) a_n = o(2^n) \text{ per } n \to +\infty;

(c) \sqrt{n} = o(a_n) \text{ per } n \to +\infty.
  Allora quelle vere sono:
A solo (a) e (b) B tutte C nessuna D solo (c) E solo (a) F solo (a) e (c)
Quesito n. 9 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{B}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) 
Quesito n. 10 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni:

 (a) il complementare di C è sempre aperto;

  (b) in ogni caso C contiene la sua frontiera;
 (c) C può avere punti isolati.
(a), (b) (c) sono tutte vere (b) (c) sono false (b) (c) sono false (a) (c) (a), (b) (c) sono tutte false (b) (c) sono false (c) (d) (d) (e) (e) (d) (d) (e) (e) (e) (e) (e) (false (fals
sono false \overline{F} (c) è vera e (a) e (b) sono false
Quesito n. 11 \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}
                                                                                                                          è uguale a:
Quesito n. 12 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{3}{r^2}\right)?
Quesito n. 13 Si considerino le affermazioni: (a) e^{2x} - e^x \approx x per x \to 0; (b) e^{2x} - e^x = x + o(x) per x \to +\infty; (c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} per x \to +\infty. Allora quelle vere sono:
A solo (b) B solo (a) e (c) C solo (c) D solo (a) E nessuna F tutte
Quesito n. 14 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
A - 1 B - \frac{1}{3} C - \frac{1}{2} D_1 E_0 F - \infty
Quesito n. 15 Il \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{(1-\cos\frac{3}{n})} è uguale a:
A = \frac{1}{3} B = \frac{1}{6} C_1 D = \frac{2}{3} E_0 F_{+\infty}
Quesito n. 16 Il \lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}} vale
A non esiste B 2 C 0 D \frac{1}{2} E +\infty F \sqrt{2}
Quesito n. 17 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
Compito n.93 Cognome: Nome: Matr:
n.1 n.2 n.3
A A A
B B B B
C C C C
D D D D
E E E E
                                                                                       n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.94 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                     Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A = \frac{1}{2} B + \infty C = 0 D = 2 E = non esiste E = \sqrt{2}
Quesito n. 2 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln(n!), b_n = n e c_n = n^2, si ha:
 \boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{E} \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ a
                                           \lim_{n \to +\infty} \frac{7\sqrt[n]{(2n)!} + 2(n^{\ln n})^2}{3n^{\ln n^2} + 5\ln((3n)!)}
 Quesito n. 3
                                                                                                                   è uguale a:
\boxed{A} \frac{2}{5} \boxed{B}_0 \boxed{C} \frac{7}{5} \boxed{D} \frac{7}{3} \boxed{E}_{+\infty} \boxed{F} \frac{2}{3}
Quesito n. 4 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
 \boxed{ \textbf{A} \, \left( \ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textbf{B} \, \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{C} \, } \, 2x^2 \ln |x| \quad \boxed{ \textbf{D} \, \left( \ln x \right)^{2 \ln x} } \quad \boxed{ \textbf{E} \, } \, 2x \ln x \quad \boxed{ \textbf{F} \, } \, x^2 \ln^2 x 
Quesito n. 5 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell con \ell finito e non nullo;
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
Quesito n. 6 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni:
 (a) 2 è un punto di accumulazione per A;
 (b) 5 appartiene alla chiusura di A;
 (c) 9 è un punto di accumulazione per A
 Allora quelle vere sono:
A solo (b) B solo (a) C solo (a) e (b) D nessuna E solo (a) e (c) F tutte
Quesito n. 7 II \lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)} è uguale a:
A_3 B_{\frac{3}{4}} C_{-1} D_{\frac{1}{4}} E_{-\infty} F_{\frac{1}{2}}
Quesito n. 8 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
A 1 B \frac{1}{2} C +\infty D 0 E -\frac{1}{2} F -1
Quesito n. 9 Il \lim_{n \to +\infty} \left(1 + \frac{1}{n+2}\right)^{n-1}
Quesito n. 10 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln \left(1+\frac{x}{3}\right)?
oxed{A} \ 0 \quad oxed{B} + \infty \quad oxed{C} \text{ non esiste} \quad oxed{D} \ 1 \quad oxed{E} \ e^3 \quad oxed{F} \ 3
 Quesito n. 11 Si considerino le affermazioni
(a) \ln(1+x) = o(x) per x \to 0;
(b) \ln(1-x) = -x + o(x) per x \to 0;
(c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono:
oxed{A} solo (a) oxed{B} solo (b) oxed{C} solo (a) e (c) oxed{D} nessuna oxed{E} tutte oxed{F} solo (c)
 Quesito n. 12 Sia A un sottoinsieme aperto e non vuoto di {\bf R}. Si considerino le affermazioni:
 (a) A è sempre un intervallo:
 (b) A non ha mai punti isolati;
 (c) il complementare di A è sempre chiuso.
Allora:
```

A (a), (b) e (c) sono tutte false (b) e (c) sono false (c) e (c) sono false (d) e (e) sono false (e) 2 affermazioni sono vere ed una è falsa (e) e (e) e vera e (a) e (c) sono false F (a), (b) e (c) sono tutte vere

Quesito n. 13 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare f'(x)

Quesito n. 14 Calcolare $\lim_{x \to 0} \frac{\ln(1+x^2) \sin \frac{1}{x}}{\ln (1+x^2)}$

Quesito n. 15 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni

(a) $a_n = o(n^4) \text{ per } n \to +\infty;$

(b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$.

Allora quelle vere sono

A solo (a) e (c) B solo (c) C solo (a) e (b) D solo (a) E tutte F nessuna

Quesito n. 16 Il $\lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right)$ è uguale a:

 $A = \frac{2}{3}$ $B = \frac{1}{3}$ C_1 D_0 $E = \frac{1}{6}$ $F_{+\infty}$

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[5]{n}$ e $c_n = \ln n$, si ha:

Compito n.94 Cognome: Matr:....

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.95 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Si considerino le affermazioni: (a) $e^x - \cos x = o(x)$ per $x \to 0$;
(b) $1 - \cos x = x + o(x)$ per $x \to 0$; (c) $e^x - \cos x \approx x$ per $x \to 0$.
Allora quelle vere sono: A nessuna B solo (b) e (c) C solo (a) D solo (b) E solo (c) F solo (a) e (b)
Quesito n. 2 II $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a:
$x \to 0$ 1 - $\cos(\tan x)$ A $\frac{1}{2}$ B 0 C 1 D non esiste in \mathbf{R}^* E 2 F $+\infty$
Quesito n. 3 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a
$ \underline{\mathbf{A}} \left(\ln x^2 \right)^{\ln x^2} \underline{\mathbf{B}} \left(\ln^2 x \right)^{\ln^2 x} \underline{\mathbf{C}} \left(2x \ln x \right) \underline{\mathbf{D}} \left(\ln x \right)^{2 \ln x} \underline{\mathbf{E}} \left(x^2 \ln^2 x \right) \underline{\mathbf{E}} \left(x^2 \ln^2 x \right) $
Quesito n. 4 Il $\lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1 + 2x^4}}$ vale
$\overline{A}\sqrt{2}$ \overline{B} 0 \overline{C} non esiste \overline{D} $\frac{1}{2}$ \overline{E} 2 \overline{F} $+\infty$
Quesito n. 5 II $\lim_{n \to +\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a:
$ \underline{\mathbf{A}} \frac{1}{3} \underline{\mathbf{B}} \underline{\mathbf{C}} \underline{0} \underline{\mathbf{b}} \underline{\mathbf{f}} \underline{\mathbf{E}} \underline{2} \underline{\mathbf{F}} + \infty $ $ \mathbf{Quesito n. 6} \mathbf{II} \lim_{n \to +\infty} \left(1 + \frac{1}{en} \right)^{n+\pi} \hat{\mathbf{e}} \text{ uguale a:} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 10 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:
$ \underline{\mathbf{A}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) $ $ \underline{\mathbf{B}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) $ $ \underline{\mathbf{C}} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) $ $ \underline{\mathbf{D}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) $ $ \underline{\mathbf{E}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) $ $ \underline{\mathbf{F}} \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) $ Quesito n. 11 Sia A un sottoinsieme non vuoto di \mathbf{R} . Quali, tra le seguenti affermazioni, sono vere?
 (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione.
A solo (b) B nessuna C solo (a) D solo (c) E tutte F solo (b) e (c)
Quesito n. 12 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale
$A - 1$ $B \frac{1}{2}$ $C - \frac{1}{2}$ $D 1$ $E 0$ $F + \infty$
Quesito n. 13 Sia $A = \mathbb{R} - \mathbb{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A ;
 (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A.
Allora quelle vere sono: A solo (a) B solo (b) C solo (a) e (c) D solo (a) e (b) E nessuna F solo (c)
Quesito n. 14 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette:
$(\mathbf{a}) \ a_n \approx b_n \ \mathrm{per} \ n \to +\infty;$
(b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$
(c) $a_n = O(b_n)$
$ (\mathbf{d}) \ a_n = o(b_n) $
$\overline{\mathbf{A}}$ solo (a), (b) e (c) $\overline{\mathbf{B}}$ nessuna $\overline{\mathbf{C}}$ solo (c) e (d) $\overline{\mathbf{D}}$ solo (b) e (c) $\overline{\mathbf{E}}$ solo (c) $\overline{\mathbf{E}}$ solo (d) Quesito n. 15 Per ogni $n \in \mathbf{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:
(a) $\sup a_n = +\infty$;
(b) $\lim_{\substack{n \to +\infty \\ n \to +\infty}} a_n = +\infty;$
(c) (a_n) è una successione crescente. Allora quelle vere sono:
A tutte B solo (c) C solo (a) D solo (a) e (b) E solo (a) e (c) F nessuna
Quesito n. 16 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare $f'(x)$.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha:

```
Compito n.96 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                          Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Date a_n = \frac{3}{n}
                                                                                        e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo}
    (c) a_n = O(b_n)
    (\mathbf{d}) \ a_n = o\left(b_n\right)
oxed{\mathbb{A}} solo (a), (b) e (c) oxed{\mathbb{B}} solo (c) e (d) oxed{\mathbb{C}} solo (c) oxed{\mathbb{D}} solo (b) e (c) oxed{\mathbb{E}} solo (d) oxed{\mathbb{F}} nessuna
Quesito n. 2 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
(a) a_n = o(n!) per n \to +\infty;

(b) a_n = o(2^n) per n \to +\infty;

(c) \sqrt{n} = o(a_n) per n \to +\infty.
  Allora quelle vere sono:
A solo (c) B solo (a) e (b) C tutte D solo (a) e (c) E nessuna F solo (a)
Quesito n. 3 Calcolare \lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}
A_1 B_{+\infty} C_{-1} D_0 E_{\text{non esiste}} F_3
Quesito n. 4 Il \lim_{n \to +\infty} n \left(e^{\frac{3}{n}} - e^{\frac{2}{n}}\right) è uguale a:
A = \frac{2}{3} B + \infty C_0 D = \frac{1}{3} E = \frac{1}{6} E_1
 Quesito n. 5 Sia C un sottoinsieme non vuoto di {\bf R}. Si considerino le affermazioni

(a) se C è chiuso e limitato allora è anche compatto;
(b) se C è chiuso allora ogni successione (a<sub>n</sub>) ⊂ C converge;

  (c) se C è chiuso allora anche il suo complementare è chiuso
  Allora:
(a), (b) e (c) sono tutte false (a), (b) e (c) sono tutte vere (c) 2 affermazioni sono vere ed una è falsa (b) (c) vera e (a) e (c) sono false (a) è vera e (b) e (c)
sono false (c) è vera e (a) e (b) sono false
Quesito n. 6 Il \lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1+x^4}} vale
A + \infty B = \frac{1}{2} C \sqrt{2} D non esiste E = 0 E = 2
Quesito n. 7 Sia A={\bf Q}\cup(-5,5). Si considerino le affermazioni: (a) 2 è un punto di accumulazione per A;
  (b) 5 appartiene alla chiusura di A;
(c) 9 è un punto di accumulazione per A. Allora quelle vere sono:
A nessuna B solo (a) e (b) C tutte D solo (b) E solo (a) F solo (a) e (c)
Quesito n. 8 Sia f(x) = e^{\sqrt{2+x^2}}. Calcolare f'(x).
Quesito n. 9 Il \lim_{x\to+\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+x} \right) vale
A + \infty B - 1 C - \frac{1}{2} D_0 E_1 F = \frac{1}{2}
Quesito n. 10 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
 \boxed{ \textcolor{red}{\mathbf{A}} \left( \ln x^2 \right)^{\ln x^2} \quad \boxed{\mathbf{B}} \ 2x \ln x \quad \boxed{\mathbf{C}} \left( \ln^2 x \right)^{\ln^2 x} \quad \boxed{\mathbf{D}} \left( \ln x \right)^{2 \ln x} \quad \boxed{\mathbf{E}} \ 2x^2 \ln |x| \quad \boxed{\mathbf{F}} \ x^2 \ln^2 x 
 Quesito n. 11 Quanto vale il limite \lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)?
A e^3 B 1 C + \infty D \text{ non esiste } B 3 F 0
Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n^{100}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si has
 \boxed{ \triangle } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \ \ \boxed{ E } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E
Quesito n. 13 II \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
\overline{A}_{8} \overline{B}_{3}^{8} \overline{C}_{3}^{4} \overline{D}_{4} \overline{E}_{3}^{2} \overline{F}_{2}
Quesito n. 14 Si considerino le affermazioni:
 (a) \tan x - \sin x = o(x) per x \to 0;
(b) \sin x = o(x) per x \to 0;
  (c) \sin x \approx \tan x \text{ per } x \to 0
 Allora quelle vere sono:
A tutte B solo (c) C solo (a) D nessuna E solo (b) F solo (a) e (c)
Quesito n. 15 \lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2^n]{n!}+5n} è uguale a:
A_0 = \frac{7}{3} C_{+\infty} = \frac{2}{5} = \frac{2}{3} = \frac{7}{5}
Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
 \boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e}
Quesito n. 17 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
A \sqrt{e} B e^e C 1 D e E + \infty F e^2
                                                                                                                                                                                                                   ..... Matr:....
Compito n.96 Cognome: . . .
                                                                                                                                      n.10 n.11 n.12
A A A
B B B B
C C C C
D D D
E E E E
F F F
                                                                                                                                                                                 n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E E
F F F
                                                                                        n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
F F F
                                             | n.1 | n.2 | n.3 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E |
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.97 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Quanto vale il limite $\lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)$?
$\boxed{\mathbb{A}_{+\infty}}$ $\boxed{\mathbb{B}_0}$ $\boxed{\mathbb{C}_{\text{non esiste}}}$ $\boxed{\mathbb{D}_{e^3}}$ $\boxed{\mathbb{E}_3}$ $\boxed{\mathbb{F}_1}$ Quesito n. 2 $\boxed{\mathbb{H}_{n \to +\infty}} \left(e + \frac{1}{n^2} \right)^n$ è uguale a:
Quesito n. 2 Il $\lim_{n \to +\infty} \left(e + \frac{1}{n^2} \right)$ è uguale a:
$\boxed{\mathbb{A}_{-1}} \boxed{\mathbb{B}_{\frac{3}{2}}} \boxed{\mathbb{C}_{1}} \boxed{\mathbb{D}_{-\frac{1}{2}}} \boxed{\mathbb{E}_{+\infty}} \boxed{\mathbb{E}_{0}}$
Quesito n. 4 Sia $A = \mathbb{R} - \mathbb{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A ;
 (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A.
Allora quelle vere sono:
\underline{A} solo (c) \underline{B} solo (a) e (c) \underline{C} solo (b) \underline{D} nessuna \underline{E} solo (a) \underline{F} solo (a) e (b)
Quesito n. 5 Calcolare $\lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}$
\boxed{A} 1 \boxed{B} -1 \boxed{C} non esiste \boxed{D} 0 \boxed{E} - ∞ \boxed{F} + ∞ $\boxed{Quesito n. 6}$ Sia C un sottoinsieme chiuso e non vuoto di \mathbf{R} . Si considerino le affermazioni:
(a) in ogni caso C è compatto;
(b) in ogni caso C contiene tutti i suoi punti di accumulazione;(c) in ogni caso C non ha punti interni.
Allora: Allora: Allora: Allora: D 2 affermazioni sono vere ed una è falsa E (a) è vera e (b) e (c)
sono false \mathbf{F} (c) è vera e (a) e (b) sono false
Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha:
$ \boxed{ \underline{\mathbb{A}} \ b_n = o(c_n) \ e \ c_n = o(a_n) \ \ } \ \boxed{ \underline{\mathbb{B}} \ c_n = o(b_n) \ e \ b_n = o(a_n) \ e \ a_n = o(a_n) \ e \ a_n = o(a_n) \ e \ a_n = o(b_n) \ \ } \ \boxed{ \underline{\mathbb{E}} \ a_n = o(b_n) \ e \ b_n = o(c_n) \ e \ c_n = o(b_n) } $
Quesito n. 8 Il $\lim_{n \to +\infty} \frac{\sin \frac{n^2}{2}}{\left(1 - \cos \frac{3}{n}\right)}$ è uguale a:
$\boxed{\mathbf{A}} \frac{1}{3} \boxed{\mathbf{B}} \frac{2}{3} \boxed{\mathbf{C}}_{0} \boxed{\mathbf{D}}_{1} \boxed{\mathbf{E}}_{+\infty} \boxed{\mathbf{F}} \frac{1}{6}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 10 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} 2n & \text{per } n \text{ dispari.} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:
(b) $\lim_{n \to +\infty} a_n = +\infty$;
$(\mathbf{c}) \ (a_n)$ è una successione crescente. Allora quelle vere sono:
A nessuna B solo (a) e (b) C solo (a) D solo (a) e (c) E tutte F solo (c)
Quesito n. 11 $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 12 Si considerino le affermazioni: (a) $e^x - \cos x = o(x)$ per $x \to 0$;
(b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$
Allora quelle vere sono: Allora quelle vere sono: Allora quelle vere sono: El colo (1) El colo (2) El colo (3) El colo (4) El colo (4) El colo (5) El colo (5) El colo (6) El colo (6) El colo (7)
A solo (c) B nessuna C solo (b) D solo (a) e (b) E solo (b) e (c) F solo (a) Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\boxed{\textbf{A}} \ \frac{3}{x} \sin^2{(\ln x)} \cos{(\ln x)} \boxed{\textbf{E}} \ \cos^3{(\ln x)} \boxed{\textbf{C}} \ \sin^3{\left(\frac{1}{x}\right)} \boxed{\textbf{D}} \ 3 \sin^2{(\ln x)} \cos{(\ln x)} \boxed{\textbf{E}} \ 3 \cos^2{\left(\frac{1}{x}\right)} \boxed{\textbf{F}} \ \frac{3}{x} \cos^2{(\ln x)}$
Quesito n. 16 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a:
$\boxed{A} + \infty \boxed{B} \frac{3}{2} \boxed{C} \text{ non esiste in } \mathbf{R}^* \boxed{D} 2 \boxed{E} \frac{1}{2} \boxed{F} 0$
Quesito n. 17 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette:
(a) $a_n \approx b_n \text{ per } n \to +\infty;$
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$
(c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Compite n.97 Cognome:

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.98 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$. Allora quelle vere sono: A solo (c) B nessuna C solo (a) e (c) D solo (a) e (b) E solo (a) F tutte Quesito n. 2 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$? $A + \infty$ $B \ 1$ $C \ 3$ $D \ \text{non esiste}$ $E \ e^3$ $F \ 0$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = \overline{100^{\sqrt{n}}}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{F}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n)$ Quesito n. 4 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $A - \frac{1}{5}$ $B - \frac{2}{5}$ $C + \infty$ $D \frac{1}{5}$ $E \frac{2}{5}$ F = 0Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \blacksquare } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \in a_n = o(c_n)$ Quesito n. 7 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ $oxed{A}$ solo (a), (b) e (c) $oxed{B}$ solo (c) $oxed{C}$ solo (c) e (d) $oxed{D}$ solo (d) $oxed{E}$ solo (b) e (c) $oxed{F}$ nessuna Quesito n. 8 Si considerino le affermazioni: (a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$ (c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono: A solo (c) B tutte C solo (b) D solo (a) e (c) E solo (a) F nessuna Quesito n. 9 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A = \frac{2}{3}$ B_0 $C = \frac{1}{6}$ D_1 $E_{+\infty}$ $F = \frac{1}{3}$ Quesito n. 10 II $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ valee A_{-1} B_0 C_1 $D_{-\infty}$ $E_{-\frac{1}{2}}$ $F_{-\frac{1}{3}}$ Quesito n. 11 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). $\frac{ \underbrace{ \text{A} \, \frac{2xe^{x^2}}{1+e^{x^2}} \, \, \underbrace{ \text{B} \, \frac{1}{2xe^{2x}} \, \, \underbrace{ \text{C} \, \frac{e^{2x}}{1+e^{x^2}} \, \, \underbrace{ \text{D} \, \frac{1}{1+e^{x^2}} \, \, \underbrace{ \text{E} \, \frac{1}{1+e^{2x}} \, \, \, \underbrace{ \text{F} \, \frac{e^{x^2}}{1+e^{x^2}} } }_{\textbf{Quesito n. 12 Calcolare } \lim\limits_{x \to 0^+} \frac{\ln(1+x^3) \sin\frac{1}{x}}{e^{x^2}-1} } }$ f A 1 $\f B$ $+\infty$ $\f C$ -1 $\f D$ non esiste $\f E$ 0 $\f F$ $-\infty$ Quesito n. 13 Sia $A = [-3, 3] \cap \mathbf{Q}$. Si considerino le affermazioni: (a) 0 è un punto interno per A; (b) 0 è un punto di accumulazione per A;
(c) √3 è un punto interno per A. Allora quelle vere sono: A solo (b) B solo (a) e (c) C nessuna D tutte E solo (a) F solo (a) e (b) $\lim_{n \to +\infty} \frac{7 \ln(n + e^n) + 2\sqrt{n}}{3 \sqrt[2n]{n!} + 5n} \quad \text{è uguale a}$ Quesito n. 14 $\boxed{A} \frac{7}{5} \boxed{B} + \infty \boxed{C} \frac{2}{5} \boxed{D}_0 \boxed{E} \frac{7}{3} \boxed{F} \frac{2}{3}$ Quesito n. 15 Sia C un sottoinsieme non vuoto di $\mathbf R$. Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. (a) e (b) è vera e (a) e (c) sono false (b) con false (c) è vera e (a) e (b) sono false (c) (a), (b) e (c) sono tutte vere (c) 2 affermazioni sono vere ed una è falsa (c) (d), (b) e (c) sono tutte false $F(\mathbf{a})$ è vera e $F(\mathbf{b})$ e $F(\mathbf{c})$ sono false Quesito n. 16 II $\lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{er}$ $A e^{-\pi} B 0 C e^{-e+\pi} D e E \frac{1}{a} F 1$ Quesito n. 17 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}}$ vale $A\sqrt{2}$ $B\frac{1}{2}$ C_0 D_2 $E_{+\infty}$ $F_{\text{non esiste}}$

| No. 10 | N

n.13 n.14 n.15
A A A A
B B B B
C C C C
D D D
E E E E

Nome: Matr:

Compito n.98 Cognome:

| N.4 | N.5 | N.6 | N.6

A A A B B B C C C C D D D D E E E E

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.99 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. $\overline{\mathbf{1}}$ Date le successioni $(a_n), (b_n)$ e (c_n) definite da $a_n = (n-1)^{n+1}, b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha: $\boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{B} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{D} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{F} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \ \textbf{e} \ b_n = o(c_n)$ Quesito n. 2 Il $\lim_{n\to +\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A = \frac{1}{3} \quad B = \frac{2}{3} \quad C \quad D + \infty \quad E \quad 0 \quad E = \frac{1}{6}$ Quesito n. 3 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=2^n \ln n$, $b_n=n^5 \ln n$ e $c_n=2^n$, si ha: $\boxed{ \triangle } \ a_n = o(b_n) \ \ e \ b_n = o(c_n) \ \ \boxed{ E } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ \boxed{ C } \ c_n = o(b_n) \ \ e \ b_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E } \ c_n = o(a_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E$ Quesito n. 4 Il $\lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2}$ è uguale a: $A = \frac{1}{2}$ B non esiste in R^* $C + \infty$ D 0 $E - \infty$ F 1 Quesito n. 5 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale A 2 B non esiste $C + \infty$ D 0 $E \sqrt{2}$ $F = \frac{1}{2}$ Quesito n. 6 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}$ $f A \ 0 \ \ B \ 3 \ \ C + \infty \ \ D \ non \ esiste \ \ E \ 1 \ \ F \ -1$ Quesito n. 7 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera;(c) C può avere punti isolati. Allora: 🖾 2 affermazioni sono vere ed una è falsa 🖺 (c) è vera e (a) e (b) sono false 🖸 (b) è vera e (a) e (c) sono false 💆 (a), (b) e (c) sono tutte false 🖼 (a) è vera e (b) e (c) sono false F (a), (b) e (c) sono tutte vere Quesito n. 8 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale A_{-1} $B_{\frac{1}{2}}$ C_1 $D_{-\frac{1}{2}}$ E_0 $F_{+\infty}$ Quesito n. 9 $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a $oxed{A}_0 \quad oxed{B} \quad rac{7}{3} \quad oxed{C} \quad rac{2}{5} \quad oxed{D} \quad rac{2}{3} \quad oxed{E} + \infty \quad oxed{F} \quad rac{7}{5}$ Quesito n. 10 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n+e}$ è uguale a: $A \sqrt{e} \quad B \quad C + \infty \quad D \quad e^e \quad E \sqrt{e^e} \quad F \quad 1$ Quesito n. 11 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a Quesito n. 12 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$ Allora quelle vere sono A solo (c) B solo (a) e (b) C tutte D solo (a) e (c) E nessuna F solo (a) Quesito n. 13 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 14 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). Quesito n. 15 Quanto vale il limite $\lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? $oxed{A} \ 0 \quad oxed{B} \ e^3 \quad oxed{C} \ 3 \quad oxed{D} \ +\infty \quad oxed{E} \ 1 \quad oxed{F} \ \text{non esiste}$ Quesito n. 16 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A; (b) 1 è un punto di frontiera per A;(c) 1 è un punto interno per A. Allora quelle vere sono:

A solo (b) B nessuna C solo (a) e (b) D solo (c) E solo (a) F solo (a) e (c)

Quesito n. 17 Si considerino le affermazioni:

(a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$.

Allora quelle vere sono

A solo (a) e (c) B nessuna C solo (a) D solo (b) E solo (c) F tutte

```
| No. 
A A A B B B C C C C D D D D E E E E
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.100 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                         Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si ha:
 \boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \ \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \ \boxed{ \square } \ c_n = o(b_n) \ e \ b_n = o(a_n) \ \boxed{ \square } \ c_n = o(a_n) \ e \ a_n = o(b_n) \ \boxed{ \blacksquare } \ a_n = o(c_n) \ e \ c_n = o(b_n) \ \boxed{ \blacksquare } \ a_n = o(c_n) \ e \ b_n = o(c_n) \
                                                         \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} \quad \text{è uguale a:}
A_0 B_{+\infty} C_{\frac{2}{\epsilon}} D_{\frac{7}{\epsilon}} E_{\frac{7}{2}} F_{\frac{2}{2}}
Quesito n. 3 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ f \circ h è uguale a
Quesito n. 4 Il \lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x} è uguale a:
\boxed{A}_{8} \boxed{B}_{\frac{2}{3}} \boxed{C}_{\frac{4}{3}} \boxed{D}_{2} \boxed{E}_{\frac{8}{3}} \boxed{F}_{4}
Quesito n. 5 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
Quesito n. 6 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x).
 \boxed{ \cfrac{1}{x} \frac{1}{x+x \ln^2 \frac{1}{x}} } \quad \boxed{ \cfrac{1}{1-\ln^2 x}} \quad \boxed{ \cfrac{C}{1+\ln^2 \frac{1}{x}}} \quad \boxed{ \cfrac{D}{x^2-x^2 \ln^2 x}} \quad \boxed{ \cfrac{E}{-\frac{1}{x^2+x^2 \ln^2 \frac{1}{x}}}} \quad \boxed{ \cfrac{F}{-\frac{1}{x+x \ln^2 x}}} \quad \boxed{ \cfrac{F}{-\frac{1}{x+x \ln^2 x}}} \quad \boxed{ \cfrac{F}{-\frac{1}{x^2+x^2 \ln^2 \frac{1}{x}}}} \quad \boxed{ \cfrac
Quesito n. 7 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni
 (a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione (a_n)\subset C converge;
  (c) se C è chiuso allora anche il suo complementare è chiuso
  Allora:
una è falsa F (c) è vera e (a) e (b) sono false
 Quesito n. 8 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni:
 (a) \sqrt{2} appartiene alla chiusura di A;
  (b) 0 è un punto di accumulazione per A;
(c) \sqrt{2} è un punto interno per A. Allora quelle vere sono:
A solo (b) B tutte C nessuna D solo (a) e (b) E solo (a) e (c) F solo (a)
Quesito n. 9 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln\left(1+\frac{x}{3}\right)?
\boxed{A} \ 1 \quad \boxed{B} \ 3 \quad \boxed{C} + \infty \quad \boxed{D} \ 0 \quad \boxed{E} \text{ non esiste} \quad \boxed{F} \ e^3
Quesito n. 10 Il \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a:
A = \frac{1}{6} \quad B + \infty \quad C = \frac{2}{3} \quad D_0 \quad E = \frac{1}{3} \quad F_1
Quesito n. 11 Si considerino le affermazioni:
(a) \ln(1+x) = o(x) \text{ per } x \to 0;

(b) \ln(1-x) = -x + o(x) \text{ per } x \to 0;
(c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono:
A nessuna B solo (a) e (c) C solo (b) D solo (c) E solo (a) F tutte
 Quesito n. 12 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right) vale
A + \infty B_1 C - \frac{1}{2} D - 1 E \frac{1}{2} F_0
Quesito n. 13 II \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
Quesito n. 14 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \to \infty} a_n = +\infty;
 (b) \lim_{n \to \infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
  Allora quelle vere sono:
A solo (a) B nessuna C solo (a) e (b) D tutte E solo (c) F solo (a) e (c)
Quesito n. 15 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
A + \infty B = 1 C = e^2 D = e^e E = \sqrt{e} E = e
Quesito n. 16 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
 \boxed{ \triangle } \ a_n = o(b_n) \ \ \mathbf{e} \ b_n = o(c_n) \ \ \mathbf{E} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \ \mathbf{E} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{E} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{E} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ b_n 
Quesito n. 17 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{e^x-1}
A non esiste B_{-1} C_{-\infty} D_{+\infty} E_0 F_1
Compite n.100 Cognome: Nome: Matr:
                                                                                                                                                             | n.1 | n.2 | n.3 | A | A | B | B | B | B | C | C | C | D | D | D | E | E | E | E | F | F | F | F | F |
```

```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
  Compito n.102 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
  Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si ha:
  \boxed{ \triangle } \ c_n = o(b_n) \in b_n = o(a_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(c_n) \qquad \boxed{ \square } \ a_n = o(c_n) \in c_n = o(b_n) \qquad \boxed{ \square } \ a_n = o(b_n) \in b_n = o(c_n) \qquad \boxed{ \blacksquare } \ c_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \in a_n = o(b_n) \qquad \boxed{ \blacksquare } \ b_n = o(a_n) \bowtie \ b_n = o(a_n) \blacksquare \ b_n = o(a_n) \blacksquare
 Quesito n. 2 Sia A = \mathbf{Q} \cup (-5, 5). Si considerino le affermazioni:
  (a) 2 è un punto di accumulazione per A;(b) 5 appartiene alla chiusura di A;
   (c) 9 è un punto di accumulazione per A
   Allora quelle vere sono:
 A solo (a) e (c) B tutte C solo (a) e (b) D solo (b) E nessuna F solo (a)
  Quesito n. 3 Quanto vale il limite \lim_{x \to 0} x \ln \left(1 + \frac{3}{x}\right)?
 A non esiste B 1 C 0 D 3 E e^3 F +\infty
 Quesito n. 4 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}
                                                                                                                                                                                                                                                      Si considerino le affermazioni
  (a) a_n = o(n^4) \text{ per } n \to +\infty;
 (b) a_n = o(n^2) per n \to +\infty.

(c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
 \boxed{ \boxed{ \boxed{A} - \frac{1}{x^2} - \frac{1}{x^3} } \quad \boxed{ \boxed{B} \quad \frac{1}{(x^2 + x) \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{ \boxed{C} \quad \frac{-x}{(x+1) \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{ \boxed{D} - \frac{1}{x^2} \ln \left(1 + \frac{1}{x}\right) } \quad \boxed{ \boxed{E} \quad \frac{1}{x^2 \ln^2 \left(1 + \frac{1}{x}\right)} \quad \boxed{ \boxed{F} \quad 1 + \frac{1}{x} } }   \boxed{ \boxed{Quesito n. 6} \quad \text{Siano } f(x) = \ln(x), \ g(x) = x^2 \text{ e } h(x) = x^x, \ \text{dove } h(x) \text{ è definita solo per } x > 0. \quad \text{Allora, per tutti i valori di } x \text{ per i quali è definita, } g \circ h \circ f \text{ è uguale a} 
 \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2} \quad \text{è uguale a:}
  Quesito n. 7
 A_0 = \frac{2}{5} = \frac{7}{5} = \frac{7}{5} = \frac{7}{3} = \frac{2}{3}
 Quesito n. 8 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
  \boxed{ \boxed{\textbf{A}} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{C}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{F}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \
 Quesito n. 9 Il \lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right) è uguale a:
 A = \frac{2}{3} B_1 C = \frac{1}{3} D_0 E_{+\infty} F = \frac{1}{6}
 Quesito n. 10 Si considerino le affermazioni:
  (a) e^x - \cos x = o(x) \text{ per } x \to 0;
(b) 1 - \cos x = x + o(x) \text{ per } x \to 0;
   (c) e^x - \cos x \approx x \text{ per } x \to 0.
   Allora quelle vere sono:
\overline{\mathbf{A}} solo (a) e (b) \overline{\mathbf{B}} solo (b) e (c) \overline{\mathbf{C}} solo (b) \overline{\mathbf{D}} nessuna \overline{\mathbf{E}} solo (c) \overline{\mathbf{F}} solo (a)

Quesito n. 11 Date a_n = \frac{1}{n + (-1)^n} e b_n = \frac{1}{n + \sin n}. Dire quali delle seguenti affermazioni sono corrette:
     (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
      (c) a_n = O(b_n)
     (d) a_n = o(b_n)
 oxed{A} solo old{(c)} e old{(d)} oxed{B} solo old{(a)}, old{(b)} e old{(c)} oxed{C} solo old{(c)} oxed{D} solo old{(d)} oxed{E} solo old{(b)} e old{(c)} old{F} nessuna
  Quesito n. 12 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
 A_{-1} B_0 C_1 D_{+\infty} E_{-\frac{1}{2}} F_{\frac{3}{2}}
 Quesito n. 13 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)(e^x-1)}{\ln(1+x^2)}
 A - \infty B non esiste C = 0 D + \infty E = 1 F = 1
 Quesito n. 14 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}} vale
 A 2 B \frac{1}{2} C \sqrt{2} D 0 E +\infty F non esiste
 \overline{\mathbf{Quesito}}n. 15 Sia Cun sottoinsieme non vuoto di R. Si considerino le affermazioni
  (a) se C è chiuso e limitato allora è anche compatto;
(b) se C è chiuso allora ogni successione (a_n)\subset C converge;
  (c) se C è chiuso allora anche il suo complementare è chiuso.
 (a), (b) e (c) sono tutte vere (a) e (b) sono false (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (c) sono false (d), (e) è vera e (a) e (c) sono false (d) e (c) sono false (d) e (d) e
 una è falsa F (a) è vera e (b) e (c) sono false
 Quesito n. 16 II \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
 A non esiste in \mathbb{R}^* \boxed{\mathbb{B}} + \infty \boxed{\mathbb{C}} \ 2 \boxed{\mathbb{D}} \ \frac{1}{2} \boxed{\mathbb{E}} \ 0 \boxed{\mathbb{F}} \ \frac{3}{2}
 Quesito n. 17 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi} è uguale a:
 A 1 B e^{-\pi} C 0 D \frac{1}{e} E e^{-e+\pi} F e^{-e+\pi}
                                                                                                                                                                                                                         | n.7 | n.8 | n.9 | n.10 | n.11 | n.12 | | | | | | | | | | | | | | | | | | |
| A | A | A | A | A | A | A |
| B | B | B | B | B | B |
| C | C | C | C | C |
| D | D | D | D | D |
| E | E | E | E | E |
| F | F | F | F | F | F |
                                                                                                                                                                                                                                           | n.1 | n.2 | n.3 | A | A | B | B | B | B | C | C | C | D | D | D | E | E | E | E | F | F | F | F | F |
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.103 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 II $\lim_{n \to +\infty} \left(1 + \frac{\pi}{n^2}\right)^{en}$ è uguale a:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 4 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a:
Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:
Quesito n. 6 Il $\lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1+x^4}}$ vale
Quesito n. 6 Il $\lim_{x\to+\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale
$f A_0 \ \ B_2 \ \ C_{non \ esiste} \ \ f D \frac{1}{2} \ \ E \sqrt{2} \ \ F_{+\infty}$
Quesito n. 7 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$
A 1 B $_{-1}$ C $_{+\infty}$ D non esiste E 0 F $_{-\infty}$ Quesito n. 8 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni: (a) se C è chiuso allora è anche limitato;
(b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
(c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. Allora:
A (a), (b) e (c) sono tutte vere B (b) è vera e (a) e (c) sono false C (a) è vera e (b) e (c) sono false D 2 affermazioni sono vere ed una è falsa E (a), (b) e (c) sono tutte false F (c) è vera e (a) e (b) sono false
Quesito n. 9 Sia $f(x) = e^{\sqrt{2}+x^2}$. Calcolare $f'(x)$.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{\sqrt{2+x^2}} = \frac{1}{2\sqrt{2+x^2}}$ Quesito n. 10 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a
All $2x^2 \ln x $ B $x^2 \ln^2 x$ C $(\ln^2 x)^{\ln^2 x}$ D $(\ln x)^{2 \ln x}$ E $(\ln x^2)^{\ln x^2}$ F $2x \ln x$
Quesito n. 11 Sia $A = \mathbb{R} - \left\{\sqrt{2}\right\}$. Si considerino le affermazioni:
(a) $\sqrt{2}$ appartiene alla chiusura di A ;
(b) $0 \stackrel{.}{\text{e}}$ un punto di accumulazione per A ; (c) $\sqrt{2} \stackrel{.}{\text{e}}$ un punto interno per A .
Allora quelle vere sono:
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5 n^{\ln n}}$ è uguale a:
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_+\infty$ Quesito n. 13 Date le succession (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha:
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ E $c_n = o(a_n)$ E $a_n = o(c_n)$ E $a_n = o(c_n)$ e $a_n = o(b_n)$
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_+\infty$ Quesito n. 13 Date le succession (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha:
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ e $a_n = o(b_n)$ F $a_n = o(c_n)$ e $c_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$;
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 \left(n + \sqrt{n}\right)^{\ln n}}{3 \ln\left(1 + e^{n^2}\right) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ e $a_n = o(b_n)$ F $a_n = o(c_n)$ e $c_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette:
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2(n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $_0$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $a_n = o(c_n)$ e $a_n = o(b_n)$ E $a_n = o(b_n)$ E $a_n = o(b_n)$ P $a_n = o(b_n)$ P $a_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo;
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to \infty} \frac{7 \ln(n!) + 2(n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ e $a_n = o(b_n)$ F $a_n = o(c_n)$ e $c_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuna D solo (c) e (d) E solo (b) e (c) F solo (c)
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to \infty} \frac{7 \ln(n!) + 2(n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ e $a_n = o(b_n)$ F $a_n = o(c_n)$ e $c_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuna D solo (c) e (d) E solo (b) e (c) F solo (c)
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B $_0$ C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ E $c_n = o(a_n)$ e $a_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuna D solo (c) e (d) E solo (b) e (e) F solo (c)
A solo (a) e (b) B solo (b) C solo (a) D nessuma E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n\to+\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5 n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ E $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ E $c_n = o(a_n)$ e $a_n = o(b_n)$ Quesito n. 14 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuma D solo (c) e (d) E solo (b) e (c) F solo (c) Quesito n. 15 Il $\lim_{n\to+\infty} \frac{(e^{x+\sin x} - 1)^2}{e^{x^2} - \cos x}$ è uguale a: A $\frac{4}{3}$ B $\frac{2}{3}$ C $\frac{8}{3}$ D 8 E 4 F 2 Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \le 100. \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o(n^4)$ per $n \to +\infty$;
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) E tutte Quesito n. 12 $\lim_{n\to+\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln(1 + e^{n^2}) + 5n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ E $c_n = o(a_n)$ e $a_n = o(b_n)$ E $a_n = o(b_n)$ e $a_n = o(b_n)$ and $a_n = a_n $
A solo (a) e (b) B solo (b) C solo (a) D nessuna E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n \to \infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n \ln n}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$ si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ D $b_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ E $a_n = o(b_n)$ e $a_n = o(b_n)$ Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n = O(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuna D solo (e) e (d) E solo (b) e (e) F solo (c) Quesito n. 15 Il $\lim_{n \to +\infty} \frac{(e^{x+\sin x} - 1)^2}{e^{x^2} - \cos x}$ è uguale a: A $\frac{1}{3}$ B $\frac{2}{3}$ C $\frac{8}{3}$ D 8 E 4 F 2 Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \le 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^3)$ per $n \to +\infty$; (b) $a_n = c(n^3)$ per $n \to +\infty$; (c) $a_n = o(n^3)$ per $n \to +\infty$; (d) $a_n = o(n^3)$ per $n \to +\infty$; (d) $a_n = o(n^3)$ per $n \to +\infty$; (e) $\lim_{n \to +\infty} a_n = +\infty$. Altora quelle vere sono: A tutte B solo (a) e (c) C solo (c) D nessuna E solo (a) e (b) E solo (a)
A solo (a) e (b) B solo (b) C solo (a) D nessuma E solo (a) e (c) F tutte Quesito n. 12 $\lim_{n\to\infty} \frac{7\ln(n!) + 2(n+\sqrt{n})^{\ln n}}{3\ln(1+e^n^2) + 5n^{\ln n}} \text{è uguale a:}$ A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^42^n$ e $c_n = \frac{8^n}{n^4}$ si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ E $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ D $b_n = o(c_n)$ D $b_n = o(c_n)$ E $c_n = o(a_n)$ e $a_n = o(b_n)$ e $a_n = o(b_n)$ e $a_n = o(b_n)$ Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\frac{a_n}{n+\infty} = b_n = \frac{3}{n}$ e on $\frac{3}{n} = \frac{3}{n} = 3$
A solo (a) c (b) B solo (b) C solo (a) D nessuma E solo (a) c (c) F tutte Quesito n. 12 $\lim_{n\to\infty} \frac{7\ln(n!)+2(n+\sqrt{n})^{\ln n}}{3\ln(1+e^n)+5n^{\ln n}}$ è uguale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ F $+\infty$ Quesito n. 13 Date le successioni (a_n) , (b_n) c (c_n) definite da $a_n=4^n$, $b_n=n^42^n$ c $c_n=\frac{8^n}{n^4}$, s i ha: A $a_n=o(b_n)$ c $b_n=o(c_n)$ B $c_n=o(b_n)$ c b $a_n=o(c_n)$ C $b_n=o(a_n)$ c $a_n=o(c_n)$ D $b_n=o(c_n)$ c $a_n=o(a_n)$ c $a_n=o(b_n)$ F $a_n=o(c_n)$ e $a_n=o(c_n)$ D $a_n=o(c_n)$ e $a_n=o(c_n)$ e $a_n=o(b_n)$ E $a_n=o(a_n)$ e $a_n=o(b_n)$ E $a_n=o(a_n)$ e $a_n=o(b_n)$ P $a_n=o(c_n)$ e $a_n=o(b_n)$ P $a_n=o(b$
A solo (a) e (b) B solo (b) C solo (a) D nessuma B solo (a) e (c) F tutte Quesito n. 12 \[\lim_{\text{ansign}} \frac{7 \lim_{\text{ln}}(n) + 2 \left(n + \sqrt{n}\)^{\text{ln}}}{3 \lim_{\text{ln}}(1 + \cdot{e}^n) + 5 \eta^{\text{ln}}} \\ \lim_{\text{ansign}} \frac{7}{3} \Boxedox{B} 0 \Boxedox{C} \frac{2}{5} \Boxedox{C} \frac{7}{5} \Boxedox{B} \frac{2}{3} \Boxedox{E} \rightarrow \] Quesito n. 13 Date of \(\text{ln} \) o \(l
A solo (a) e (b) B solo (b) C solo (a) D nessuma E solo (a) e (c) E tutte Quesito n. 12 $\lim_{n \to \infty} \frac{7 \ln(n!) + 2(n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n}) + 5 n^{\ln n}}$ è ugunle a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ D + ∞ Quesito n. 13 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^3}$, si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ B $c_n = o(b_n)$ e $b_n = o(a_n)$ C $b_n = o(a_n)$ e $a_n = o(c_n)$ D $b_n = o(c_n)$ e $c_n = o(a_n)$ E $c_n = o(a_n)$ e $a_n = o(b_n)$ e $a_n = o(b_n)$ e $a_n = o(b_n)$ Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ con ℓ finite e non nullo; (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ (d) $a_n = o(b_n)$ A solo (a), (b) e (c) B solo (d) C nessuma D solo (c) e (d) E solo (b) e (c) E solo (c) Quesito n. 15 II $\lim_{n \to 0} \frac{(e^{\ell + i n x} - 1)^2}{a^2 e^{\ell - 2} \cos x}$ è uguale a: A $\frac{4}{3}$ B $\frac{2}{3}$ C $\frac{8}{3}$ D s E 4 E 2 Quesito n. 16 Per ogni $n \in \mathbb{N}$ definition $a_n = \begin{cases} n^3 & \text{per } n \le 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^2)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $a_{n \to \infty} = (a_n)$ Per $a_n \to \infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $a_n = (a_n)$ Per $a_n \to \infty$; (d) $a_n = a_n$ (n') per $a_n \to \infty$; (e) $a_n = (a_n)$ Per $a_n \to \infty$; (f) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n)$ Per $a_n \to \infty$; (g) $a_n = (a_n$
As solo (a) e (b) E solo (b) C solo (a) D nessuma E solo (a) e (c) E untre Quesito n. 12 $\lim_{n\to\infty} \frac{7\ln(nt) + 2(n_1 + \sqrt{n})^{\ln n}}{3\ln(1 + e^{n^2}) + 5n^{\ln n}}$ è quale a: A $\frac{7}{3}$ B 0 C $\frac{2}{5}$ D $\frac{7}{5}$ E $\frac{2}{3}$ E $+\infty$ Quesito n. 13 Date le successioni (a _n), (b _n) e (b _n) edinite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$; si ha: A $a_n = o(b_n)$ e $b_n = o(c_n)$ E $c_n = o(b_n)$ e $b_n = o(a_n)$ E $b_n = o(a_n)$ E $b_n = o(a_n)$ E $b_n = o(a_n)$ E $a_n = o(b_n)$ Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$; (b) $\frac{1}{n+2} \frac{a_n}{b_n} = \ell$ con ℓ finito e non nullo; (c) $a_n \approx 0$ (b) (c) E solo (d) C nessuma D solo (c) e (d) E solo (b) e (c) E solo (c) Quesito n. 15 Il $\frac{1}{\ln (e^{e^{+2m\pi}x}-1)^2}$ è quale a: A $\frac{1}{3}$ B $\frac{2}{3}$ C $\frac{3}{3}$ B 8 E 4 E 2 Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiano $a_n = \begin{cases} n^3 & \text{per } n \le 100, \\ n & \text{per } n > 100. \end{cases}$ Quesito n. 16 Per ogni $n \in \mathbb{N}$ definiano $a_n = \begin{cases} n^3 & \text{per } n \le 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^2)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $a_n = o(n^2)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $a_n = o(n^2)$ per $n \to +\infty$; (d) $a_n = o(n^2)$ per $n \to +\infty$; (e) $a_n = o(n^2)$ per $n \to +\infty$; (f) $a_n = o(n^2)$ per $n \to +\infty$; (g) $a_n = o(n^2)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $a_n = o(n^2)$ per $n \to +\infty$; (d) $a_n = o(n^2)$ per $n \to +\infty$; (e) $a_n = o(n^2)$ per $n \to +\infty$; (f) $a_n = o(n^2)$ per $n \to +\infty$; (g) $a_n = o(n^2)$ per $n \to +\infty$; (h) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o(n^2)$ per $n \to +\infty$; (o) $a_n = o($
A solo (a) e (b) B solo (b) C solo (a) D nessuma E solo (a) e (c) E tutte Quesito n. 12
As solo (a) e (b) \Box solo (a) \Box solo (a) \Box sessum \Box solo (a) e (c) \Box tutte Quesito n. 12 $\lim_{n\to\infty} \frac{7 \ln(n) + 2(n + \sqrt{n})^{\ln n}}{3 \ln (1 + c^n) + 5 \ln^{n} n}$ è uguale a: \Box
Note (a) c (b) Boolo (b) Coolo (a) Doesuma E solo (a) c (c) E tutte Quesito n. 12 $\lim_{n\to\infty} \frac{7 \ln(n!) + 2 \ln x + \sqrt{n}}{3 \ln (1 + e^n)^2 + 5 n^{2n}}$ è uguale a: A $\frac{7}{3}$ B o C $\frac{2}{5}$ D $\frac{7}{5}$ D $\frac{2}{5}$ D $\frac{1}{5}$ D D $\frac{1}{5}$ D D D D D D D D D D D D D D D D D D D

```
Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^{n^2}, b_n = 3^n e c_n = 2^n, si ha:
 \boxed{ \textbf{A} \ a_n = o(c_n) \in c_n = o(b_n) } \quad \boxed{ \textbf{B} \ b_n = o(c_n) \in c_n = o(a_n) } \quad \boxed{ \textbf{C} \ c_n = o(a_n) \in a_n = o(b_n) } \quad \boxed{ \textbf{D} \ b_n = o(a_n) \in a_n = o(c_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{F} \ a_n = o(b_n) \in b_n = o(c_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_n = o(a_n) } \quad \boxed{ \textbf{E} \ c_n = o(b_n) \in b_
Quesito n. 2 Sia A = [-3, 3] \cap \mathbf{Q}. Si considerino le affermazioni:
  (a) 0 è un punto interno per A;
  (b) 0 è un punto di accumulazione per A;
  (c) √3 è un punto interno per A.
  Allora quelle vere sono
A solo (a) e (c) B solo (a) e (b) C solo (b) D solo (a) E nessuna F tutte
Quesito n. 3 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;
(b) \lim_{n\to+\infty} a_n = +\infty;
 (c) (a_n) è una successione crescente.
  Allora quelle vere sono:
A nessuna B solo (a) C solo (a) e (c) D tutte E solo (c) F solo (a) e (b)
                                               \lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} è uguale a:
A \frac{7}{5} B \frac{2}{5} C_{+\infty} D_0 E \frac{7}{3} F \frac{2}{3}
Quesito n. 5 Il \lim_{n \to +\infty} \left(1 - \frac{1}{en}\right)^{en+\pi} è uguale a
A e^{-e+\pi} B \frac{1}{e} C 0 D e^{-\pi} E e F 1
Quesito n. 6 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a
A = \frac{1}{2} B = -\infty C = 0 D = +\infty E = 1 E = 1 non esiste in R^*
Quesito n. 7 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si ha:
\boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{C}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{D}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{\textbf{E}} \ a_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ a_n = o(b_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{E}} \ a_n = o(a_n) \ \textbf{e} \ a_n =
Quesito n. 8 Calcolare \lim_{x\to 0^+} \frac{\left(e^x-1\right)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
A = -1 B = -\infty C = -\infty D non esiste E = 1 E = 0
 Quesito n. 9 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ f \circ h è uguale a
Quesito n. 10 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
Quesito n. 11 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right) vale
A - \frac{1}{2} B_0 C \frac{1}{2} D - 1 E + \infty F_1
Quesito n. 12 Sia f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)}. Calcolare f'(x).
Quesito n. 13 Quanto vale il limite \lim_{x\to +\infty} x^2 \ln\left(1+\frac{3}{x}\right)?
A + \infty B_1 C_3 D_0 E_{e^3} F_{non esiste}
Quesito n. 14 Si considerino le affermazioni:

(a) e^x - 1 \approx x per x \to 0;

(b) e^x - 1 = o(x) per x \to 0;

(c) e^x - 1 = x + o(x) per x \to +\infty.
 Allora quelle vere sono:
A solo (a) B solo (b) C solo (c) D solo (b) e (c) E solo (a) e (c) F nessuna
Quesito n. 15 Il \lim_{x\to+\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}} vale
A non esiste B 2 C 0 D \sqrt{2} E \frac{1}{2} F +\infty
Quesito n. 16 Il \lim_{n \to +\infty} e^n \ln (1 + e^{-n}) è uguale a:
A_1 B_0 C_{\frac{1}{3}} D_{+\infty} E_{\frac{1}{6}} F_{\frac{2}{3}}
\overline{\textbf{Quesito n. 17}} \ \text{Sia $C$ un sottoinsieme chiuso e non vuoto} \ \overline{\textbf{di R}}. \ \text{Si considerino le affermazioni:}
  (a) in ogni caso C è compatto;
  (b) in ogni caso C contiene tutti i suoi punti di accumulazione:
(c) in ogni caso C non ha punti interni. Allora:
(a) è vera e (a) e (c) sono false (b) e vera e (a) e (b) sono false (c) e vera e (a) e (b) sono false (c) (a) (b) e (c) sono tutte false (d) (a) è vera e (b) e (c) sono false (d), (b) e (c) sono tutte
vere E 2 affermazioni sono vere ed una è falsa
                                                                                                                                                                n.10 n.11 n.12
A A A
B B B
C C C C
D D D
E E E
                                                                                                                                                                             n.13 n.14 n.15
A A A
B B B B
C C C C
D D D
E E E
                                                                                      n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
```

```
Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Compito n.105 del test di preselezione per il I esonero
 Quesito n. 1 Il \lim_{n \to +\infty} \left(1 + \frac{\pi}{n^2}\right)^{en} è uguale a
 Quesito n. 2 Si considerino le affermazioni:
 (a) e^{2x} - e^x \approx x \text{ per } x \to 0;

(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;
 (c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
Allora quelle vere sono:
 A solo (c) B solo (a) e (c) C solo (a) D nessuna E tutte F solo (b)
 Quesito n. 3 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)?
 A 1 B e^3 C non esiste D 0 E +\infty F 3
 Quesito n. 4 Sia f(x) = \sin^3(\ln x). Calcolare f'(x)
 \boxed{\textbf{A} \ 3 \sin^2{(\ln x)} \cos{(\ln x)}} \quad \boxed{\textbf{B} \ \frac{3}{x}} \cos^2{(\ln x)} \quad \boxed{\textbf{C} \ \frac{3}{x}} \sin^2{(\ln x)} \cos{(\ln x)} \quad \boxed{\textbf{D} \ 3 \cos^2{\left(\frac{1}{x}\right)}} \quad \boxed{\textbf{E} \ \cos^3{(\ln x)}} \quad \boxed{\textbf{F} \ \sin^3{\left(\frac{1}{x}\right)}} 
 Quesito n. 5 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni:

 (a) se C è chiuso allora è anche limitato;

  (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente;
 (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C.
 (a) è vera e (a) e (c) sono false (b) cora e (a) e (b) sono false (c) e vera e (a) e (b) sono false (c) (a), (b) e (c) sono tutte false (d) e vera e (b) e (c) sono false (e) (a), (b) e (c) sono tutte
 vere \overline E 2 affermazioni sono vere ed una è falsa
 Quesito n. 6 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n!)^2, b_n = n^{2n} e c_n = 2^{n^2}, si has
  \boxed{ \boxed{ \textbf{A} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) } \quad \boxed{ \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) } \quad \boxed{ \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) } \quad \boxed{ \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) } \quad \boxed{ \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) } \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) 
 Quesito n. 7 Date le successioni (a_n), (b_n) e (c_n) definite da a_n=n\ln n, b_n=n\sqrt{n} e c_n=\frac{n^2}{\ln n}, si ha:
  \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \\ \boxed{ \square } \ b_n = o(c_n) \in c_n = o(a_n) \\ \boxed{ \square } \ b_n = o(a_n) \in a_n = o(c_n) \\ \boxed{ \square } \ c_n = o(a_n) \in a_n = o(b_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \in b_n = o(a_n) \\ \boxed{ \square } \ c_n = o(b_n) \\ \boxed{ \square } \ c_n = 
 Quesito n. 8 Sia A = \mathbf{Z} \cup (0, +\infty). Si considerino le affermazioni:
  (a) 1 è un punto di accumulazione per A;(b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A. Allora quelle vere sono:
 Quesito n. 10 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}} vale
 A\sqrt{2} B C +\infty D O E non esiste F \frac{1}{2}
 Quesito n. 11 \lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5 n^{\ln n}} è uguale as
\frac{\boxed{\textbf{A}} + \infty \quad \boxed{\textbf{B}} - 1 \quad \boxed{\textbf{C}} - \frac{1}{2} \quad \boxed{\textbf{D}} \frac{3}{2} \quad \boxed{\textbf{E}} \ 0 \quad \boxed{\textbf{F}} \ 1}{\textbf{Quesito n. 13} \quad \boxed{\textbf{Il}} \quad \lim_{x \to 0} \frac{e^x - e^{2x}}{\tan 5x} \quad \text{è uguale a:} }
\boxed{\mathbf{A}}_{+\infty} \boxed{\mathbf{B}}_{\frac{1}{5}} \boxed{\mathbf{C}}_{0} \boxed{\mathbf{D}}_{\frac{2}{5}} \boxed{\mathbf{E}}_{-\frac{2}{5}} \boxed{\mathbf{F}}_{-\frac{1}{5}}
 Quesito n. 14 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) \text{ per } n \to +\infty;
 (b) a_n = o(2^n) per n \to +\infty;
(c) (a_n) è una successione crescente.
  Allora quelle vere sono:
 Quesito n. 15 Il \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{(1-\cos\frac{3}{n})} è uguale a:
 A = \frac{1}{3} = -\infty C = 0 D = \frac{2}{3} = 1 E = \frac{1}{6}
 Quesito n. 16 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}
(a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 Compito n.105 Cognome: . . . . .
                                                                                                                             n.7 n.8 n.9
A A A
B B B
C C C
D D D
E E E E
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.106 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \leq 100, \\ n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o\left(n^2\right)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono: A solo (a) e (c) B solo (a) e (b) C solo (a) D solo (c) E tutte F nessuna Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \left(1 + \frac{1}{n}\right)^n$, $b_n = 3^n$ e $c_n = 2^n$, si ha: **Quesito n. 3** Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}$. Dire quali delle seguenti affermazioni sono corrette: (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ Quesito n. 4 Quanto vale il limite $\lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)$? Quesito n. 5 Sia $f(x) = \sqrt{1 + x\sqrt{x}}$. Calcolare f'(x). Quesito n. 6 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A = \frac{1}{6} = \frac{2}{2} = \frac{1}{2} =$ Quesito n. 7 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$ $A + \infty$ $B - \infty$ C - 1 D non esiste E 1 F 0 $\lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 (n^{\ln n})^2}{3n^{\ln n^2} + 5 \ln ((3n)!)}$ Quesito n. 8 è uguale a: $A + \infty$ $B = \frac{2}{5}$ $C = \frac{7}{3}$ $D = \frac{2}{3}$ $E_0 = \frac{7}{5}$ Quesito n. 9 Si considerino le affermazioni: (a) $\ln(1+x) = o(x)$ per $x \to 0$; (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono: A solo (a) B nessuna C solo (a) e (c) D solo (b) E solo (c) F tutte

Quesito n. 10 Il $\lim_{x\to 0} \frac{\sqrt{1+x^2}-\cos x}{\ln(1+2x^2)}$ è uguale as

 $\boxed{A} \frac{1}{2} \boxed{B} \frac{3}{4} \boxed{C} \frac{1}{4} \boxed{D} 3 \boxed{E} -1 \boxed{F} -\infty$

Quesito n. 11 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[5]{n}$ e $c_n = \ln n$, si ha:

 $\boxed{ \triangle } \ b_n = o(a_n) \ \ \mathbf{e} \ a_n = o(c_n) \ \ \boxed{ \mathbf{E} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ \ \boxed{ \mathbf{C} } \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \ \boxed{ \mathbf{E} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \ \boxed{ \mathbf{E} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \ \mathbf{e} \ \mathbf{e} \ b_n = o(b_n) \ \ \mathbf{e} \ b$

Quesito n. 12 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni:

(a) il complementare di C è sempre aperto;

(b) in ogni caso C contiene la sua frontiera

(c) C può avere punti isolati. Allora:

tutte vere F (a) è vera e (b) e (c) sono false

🖾 2 affermazioni sono vere ed una è falsa 🖺 (a), (b) e (c) sono tutte false 🖸 (b) è vera e (a) e (c) sono false 🗓 (c) è vera e (a) e (b) sono false 🖺 (a), (b) e (c) sono

Quesito n. 13 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale

 $A - \frac{1}{2}$ $B - \frac{1}{3}$ C 0 $D - \infty$ E 1 F - 1

Quesito n. 14 Il $\lim_{n\to+\infty} \overline{\left(1+\frac{1}{n+2}\right)^{n+e}}$ è uguale a:

A 1 B e C $\sqrt{e^e}$ D \sqrt{e} E $+\infty$ F e^e

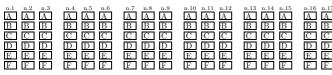
Quesito n. 15 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a

Quesito n. 16 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale

 $A = \frac{1}{2}$ $B \sqrt{2}$ C non esiste $D_0 = 2$ $F + \infty$

Quesito n. 17 Sia $A = \mathbf{R} - \left\{ \sqrt{2} \right\}$. Si considerino le affermazioni:

(a) $\sqrt{2}$ appartiene alla chiusura di A;


(b) 0 è un punto di accumulazione per A;

(c) $\sqrt{2}$ è un punto interno per A.

Allora quelle vere sono:

A solo (b) B solo (a) C solo (a) e (b) D solo (a) e (c) E tutte F nessuna

Compito n.106 Cognome:.... Nome: Matr:


```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.107 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Quanto vale il limite \lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)?
A + \infty B non esiste C 1 D 3 E e^3 F 0
 Quesito n. 2 Si considerino le affermazioni:
(a) \sin x - x = o(x) per x \to 0;

(b) \sin x \approx x per x \to 0;
(c) \frac{\sin x}{x} \to 0 per x \to +\infty
Allora quelle vere sono:
A tutte B solo (a) e (c) C nessuna D solo (a) E solo (b) F solo (c)
Quesito n. 3 Il \lim_{x\to 0} \frac{e^{\sin x} - \cos x}{r^2} è uguale a:
A + \infty B non esiste in R^* C = \frac{1}{2} D 0 E - \infty F 1
Quesito n. 4 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
   (d) a_n = o(b_n)
oxed{\mathbb{A}} solo (b) e (c) oxed{\mathbb{B}} solo (c) oxed{\mathbb{C}} solo (a), (b) e (c) oxed{\mathbb{D}} solo (d) oxed{\mathbb{E}} nessuna oxed{\mathbb{F}} solo (c) e (d)
  \overline{\textbf{Quesito n. 5}} \ \ \text{Siano} \ f(x) = \ln(x), \ g(x) = x^2 \ \text{e} \ h(x) = x^x, \ \text{dove} \ h(x) \ \text{\`e} \ \text{definita solo per} \ x > 0. \ \text{Allora, per tutti i valori di} \ x \ \text{per i quali \'e} \ \text{\'e} \ \text{definita,} \ h \circ g \circ f \ \text{\`e} \ \text{uguale a} \ \text{otherwise} \ \text{
 \boxed{ \textcolor{red}{\mathbf{A}} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textcolor{red}{\mathbf{B}} } \ 2x \ln x \quad \boxed{ \textcolor{red}{\mathbf{C}} } \ x^2 \ln^2 x \quad \boxed{ \textcolor{red}{\mathbf{D}} } \ 2x^2 \ln |x| \quad \boxed{ \textcolor{red}{\mathbf{E}} } \ \left( \ln x \right)^{2 \ln x} \quad \boxed{ \textcolor{red}{\mathbf{F}} } \ \left( \ln^2 x \right)^{\ln^2 x} 
                                                \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}
 Quesito n. 6
A_{\frac{2}{5}} B_{+\infty} C_{\frac{7}{5}} D_0 E_{\frac{2}{3}} F_{\frac{7}{3}}
\overline{\mathbf{Quesito}} n. 7 Sia A un sottoinsieme non vuoto di \mathbf{R}. Quali, tra le seguenti affermazioni, sono vere
  (a) se A è aperto allora la sua frontiera è vuota;
  (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
 (c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione
A solo (a) B nessuna C solo (b) e (c) D tutte E solo (b) F solo (c)
 Quesito n. 8 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right) vale
A = \frac{1}{2} B = -1 C = 0 D = -\infty E = 1 E = -\frac{1}{2}
Quesito n. 9 Il \lim_{n\to+\infty} \left(1+\frac{1}{en}\right)^{n+\pi} è uguale a:
Quesito n. 10 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = (n-1)^{n+1}, b_n = n^n e c_n = (n+1)^{n-1}, si ha:
Quesito n. 11 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n^4) \text{ per } n \to +\infty;
(b) a_n = o\left(n^2\right) per n \to +\infty;

(c) \lim_{n \to +\infty} a_n = +\infty.
 Allora quelle vere sono
A solo (a) e (c) B tutte C solo (c) D nessuna E solo (a) e (b) F solo (a)
Quesito n. 12 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}} vale
A + \infty B 2 C \sqrt{2} D \frac{1}{2} E non esiste F 0
Quesito n. 13 Il \lim_{n\to+\infty}\frac{n^2}{3}\left(1-\cos\frac{2}{n}\right) è uguale a:
A_1 = \frac{1}{6} C_{+\infty} = D_0 = \frac{1}{3} = \frac{2}{3}
Quesito n. 14 Calcolare \lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}
A - 1 B non esiste C + \infty D 1 E 0 F -\infty
Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n \ln n, b_n = n \sqrt{n} e c_n = \frac{n^2}{\ln n}, si ha:
 \boxed{ \textbf{A} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{B} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{C} } \ a_n = o(b_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \
Quesito n. 16 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:

(a) 0 è un punto di accumulazione per A;
(b) -2 è un punto di accumulazione per A;
(c) 2<sup>-100</sup> è un punto di accumulazione per A

  Allora quelle vere sono:
A solo (a) e (b) B tutte C solo (a) D solo (a) e (c) E solo (b) F nessuna
Quesito n. 17 Sia f(x) = \arctan\left(\ln\frac{1}{x}\right). Calcolare f'(x)
Compito n.107 Cognome: . . . .
                                                                                                                                                                                                                                                             Matr:
                                                                                                                                   n.7 n.8 n.9
A A A
B B B B
C C C C
D D D
E E E E
F F F
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.108 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $g \circ f \circ h$ è uguale a $\boxed{ \textbf{A} \left(\ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} } \ 2x \ln x \quad \boxed{ \textbf{C} } \ x^2 \ln^2 x \quad \boxed{ \textbf{D} } \left(\ln x \right)^{2 \ln x} \quad \boxed{ \textbf{E} } \ 2x^2 \ln |x| \quad \boxed{ \textbf{F} } \left(\ln^2 x \right)^{\ln^2 x}$ $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}} \quad \text{è uguale a:}$ Quesito n. 2 $\overline{A} \frac{7}{3} \overline{B} \frac{2}{3} \overline{C} \frac{7}{5} \overline{D}_{+\infty} \overline{E}_0 \overline{F} \frac{2}{5}$ Quesito n. 3 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}}$ vale $A_0 = \frac{1}{2} \quad C\sqrt{2} \quad D + \infty \quad E_2 \quad F \text{ non esiste}$ Quesito n. 4 Sia $f(x) = e^{\sqrt{2+x^2}}$. Calcolare f'(x).

 $\frac{e^{\sqrt{2+x^2}}}{x^2} \quad \boxed{D} \frac{e^{\sqrt{2+x^2}}}{2\sqrt{2+x^2}}$ $E 2xe^{\sqrt{2}+x^2}$ $F 2xe^{\frac{1}{2\sqrt{2}+x^2}}$

 Quesito n. 5 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \left\{ \begin{matrix} n \\ \arctan n \end{matrix} \right.$ per n pari, Si considerino le affermazioni:

(a) $\sup_{n \in \mathbb{N}} a_n = +\infty;$ (b) $\lim_{n \to +\infty} a_n = +\infty;$

(c) (a_n) è una successione crescente.

Allora quelle vere sono:

A solo (a) B solo (c) C solo (a) e (c) D solo (a) e (b) E tutte F nessuna

Quesito n. 6 Si considerino le affermazioni:

(a) $e^x - 1 \approx x \text{ per } x \to 0;$ (b) $e^x - 1 = o(x) \text{ per } x \to 0;$

(b) $e^x - 1 = o(x)$ per $x \to 0$; (c) $e^x - 1 = x + o(x)$ per $x \to +\infty$. Allora quelle vere sono:

A solo (a) B nessuna C solo (a) e (c) D solo (c) E solo (b) e (c) F solo (b)

Quesito n. 7 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni:

(a) 2 è un punto di accumulazione per A; (b) 5 appartiene alla chiusura di A;

(c) 9 è un punto di accumulazione per A

Allora quelle vere sono

A solo (a) e (b) B solo (b) C solo (a) e (c) D tutte E solo (a) F nessuna

Quesito n. 8 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a:

 $A + \infty$ B e $C e^2$ $D e^e$ $E _1$ $F \sqrt{e}$

Quesito n. 9 Il $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x} \right)$ vale

Quesito n. 10 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\ln(1+x)}{e^{x^2}-1}$

 $A 0 B 1 C -1 D -\infty E \text{ non esiste } F +\infty$

Quesito n. 11 Il $\lim_{x\to 0} \frac{e^{\sin x} - 1}{1 - \cos(\tan x)}$ è uguale a:

A non esiste in \mathbb{R}^* B 1 C 2 D 0 E $+\infty$ F $\frac{1}{2}$

Quesito n. 12 Date $a_n = \frac{1}{n + (-1)^n}$ e $b_n = \frac{1}{n + \sin n}$. Dire quali delle seguenti affermazioni sono corrette:

(a) $a_n \approx b_n \text{ per } n \to +\infty$

(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$

(c) $a_n = O(b_n)$

(d) $a_n = o(b_n)$

 $oxed{A}$ solo (b) e (c) $oxed{B}$ nessuna $oxed{C}$ solo (c) $oxed{D}$ solo (a), (b) e (c) $oxed{E}$ solo (c) e (d) $oxed{F}$ solo (d)

Quesito n. 13 Quanto vale il limite $\lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)$?

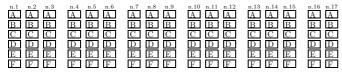
 $A + \infty$ B non esiste C 3 D 0 E 1 F e^3

Quesito n. 14 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni:

(a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione $(a_n)\subset C$ converge;

(c) se C è chiuso allora anche il suo complementare è chiuso.

(c) è vera e (a) e (b) sono false (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte vere (b) è vera e (a) e (b) è vera e (a) e (c) sono false (b) e (c) sono tutte vere (c) e (c) sono false (c) e (c) e (c) sono false (c) e (c) e (c) e (c) e (c) sono false (c) e (c) una è falsa F (a) è vera e (b) e (c) sono false


Quesito n. 15 Il $\lim_{n \to +\infty} e^n \ln (1 + e^{-n})$ è uguale a:

A₁ B_{$\frac{2}{3}$} C₀ D_{$\frac{1}{3}$} E_{+ ∞} F $\frac{1}{6}$

Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n=(n!)^2$, $b_n=n^{2n}$ e $c_n=2^{n^2}$, si ha:

 $\boxed{ \boxed{\textbf{A}} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{\textbf{C}} \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{\textbf{D}} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{\textbf{F}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \$

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln^2 n$, $b_n = \frac{n}{\ln n}$ e $c_n = \sqrt[3]{n}$, si ha:

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.109 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni: (a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) (a_n) è una successione crescente Allora quelle vere sono: A solo (a) e (b) B tutte C solo (a) e (c) D solo (a) E nessuna F solo (c) $\lim_{n \to +\infty} \frac{7 \ln(n!) + 2 (n + \sqrt{n})^{\ln n}}{3 \ln (1 + e^{n^2}) + 5n^{\ln n}}$ Quesito n. 3 Sia $A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}$. Si considerino le affermazioni: (a) 0 è un punto di accumulazione per A; (b) -2 è un punto di accumulazione per A;
(c) 2⁻¹⁰⁰ è un punto di accumulazione per A Allora quelle vere sono: A solo (a) B solo (a) e (c) C tutte D solo (a) e (b) E solo (b) F nessuna Quesito n. 4 Il $\lim_{x\to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}}$ vale A non esiste $\mathbb{B} \frac{1}{2}$ $\mathbb{C} + \infty$ $\mathbb{D} 2$ $\mathbb{E} 0$ $\mathbb{F} \sqrt{2}$ Quesito n. 5 Il $\lim_{n \to +\infty} \frac{n^2}{3} \left(1 - \cos \frac{2}{n}\right)$ è uguale as $A_1 \quad B \quad \frac{1}{6} \quad C_{+\infty} \quad D \quad \frac{1}{3} \quad E \quad \frac{2}{3} \quad F_0$ Quesito n. 6 $\lim_{x\to+\infty} \sqrt{x} \left(\sqrt{x^3+2}-\sqrt{x^3+x}\right)$ vale A_{-1} B_0 $C_{+\infty}$ D_1 $E_{\frac{1}{2}}$ $F_{-\frac{1}{2}}$ Quesito n. 7 Calcolare $\lim_{x\to 0^+} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\ln(1+x^2)}$ A non esiste B - 1 C 1 $D + \infty$ E 0 $F - \infty$ Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (2n)!$, $b_n = (n+1)^n$ e $c_n = n^{n+1}$, si ha: Quesito n. 9 Il $\lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2}$ è uguale a: $\boxed{A} \frac{1}{2} \boxed{B} \frac{3}{2} \boxed{C} + \infty \boxed{D} 2 \boxed{E} \text{ non esiste in } \mathbf{R}^* \boxed{F} 0$ Quesito n. 10 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x^2}\right)$? $\boxed{\textbf{A}\, \left(\ln^2 x\right)^{\ln^2 x}} \quad \boxed{\textbf{B}\, 2x \ln x} \quad \boxed{\textbf{C}\, \left(\ln x\right)^{2 \ln x}} \quad \boxed{\textbf{D}\, \left(\ln x^2\right)^{\ln x^2}} \quad \boxed{\textbf{E}\, x^2 \ln^2 x} \quad \boxed{\textbf{F}\, 2x^2 \ln |x|}$ Quesito n. 12 Si considerino le affermazioni: (a) $e^x - \cos x = o(x) \text{ per } x \to 0;$ (b) $1 - \cos x = x + o(x) \text{ per } x \to 0;$ (c) $e^x - \cos x \approx x \text{ per } x \to 0.$ Allora quelle vere sono: A solo (c) B nessuna C solo (a) D solo (b) e (c) E solo (b) F solo (a) e (b) Quesito n. 13 Sia $f(x) = \frac{1}{\ln(1+\frac{1}{x})}$. Calcolare f'(x). Quesito n. 14 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni (a) in ogni caso C è compatto; (b) in ogni caso ${\cal C}$ contiene tutti i suoi punti di accumulazione (c) in ogni caso C non ha punti interni. Allora: A 2 affermazioni sono vere ed una è falsa (c) è vera e (a) e (b) sono false (b) è vera e (a) e (c) sono false (a) (b) è vera e (a) e (c) sono false (a) (b) e (c) sono tutte vere (b) (a) (b) e (c) sono tutte vere tutte false F (a) è vera e (b) e (c) sono false Quesito n. 15 Il $\lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n$ è uguale a Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n\sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha: $\boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{F}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(a_n) \ \mathbf$ Quesito n. 17 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ \overline{A} solo (a), (b) e (c) \overline{B} solo (d) \overline{C} solo (c) \overline{D} solo (b) e (c) \overline{E} nessuna \overline{F} solo (c) e (d)

|--|

```
Compito n.110 del test di preselezione per il I esonero
Quesito n. 1 Il \lim_{n \to +\infty} \left(1 + \frac{1}{en}\right)
                                                     è uguale a:
```

A e B $e^{\frac{1}{e}+\pi}$ $C_1 \quad D_{+\infty} \quad E_{e^{\frac{1}{\epsilon}}}$ $F e^{\tau}$

Quesito n. 2 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni

(a) A è sempre un intervallo

(b) A non ha mai punti isolati;

(c) il complementare di A è sempre chiuso.

A (a), (b) e (c) sono tutte false B (a), (b) e (c) sono tutte vere C (a) è vera e (b) e (c) sono false D (c) è vera e (a) e (b) sono false E (b) è vera e (a) e (c) sono false E 2 affermazioni sono vere ed una è falsa

Quesito n. 3 Quanto vale il limite $\lim_{x\to 0^+} x \ln\left(1+\frac{3}{x}\right)$?

A 3 B 1 C 0 D e^3 E non esiste F $+\infty$

 $\lim_{n \to +\infty} \frac{7\sqrt[n]{(2n)!} + 2(n^{\ln n})^2}{3n^{\ln n^2} + 5\ln((3n)!)}$

 $A \frac{7}{3} B \frac{2}{3} C_{+\infty} D_0 E \frac{7}{5} F \frac{2}{5}$

Quesito n. 5 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha:

 $\boxed{ \triangle } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ E } \ a_n = o(c_n) \ e \ c_n = o(b_n) \quad \boxed{ C } \ b_n = o(a_n) \ e \ a_n = o(c_n) \quad \boxed{ D } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ c_n = o(a_n) \ e \ a_n = o(b_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(c_n) \ e \ c_n = o(a_n) \ e \ c_n = o($

Quesito n. 6 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}$. Dire quali delle seguenti affermazioni sono corrette:

(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$

(c) $a_n = O(b_n)$

(d) $a_n = o(b_n)$

A solo (a), (b) e (c) B solo (c) e (d) C nessuna D solo (c) E solo (d) F solo (b) e (c)

Quesito n. 7 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $h \circ f \circ g$ è uguale a

Quesito n. 8 Il $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale

A 1 B -1 C 0 D $-\frac{1}{2}$ E $-\frac{1}{3}$ F $-\infty$

Quesito n. 9 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a:

 $\boxed{\mathbf{A}} + \infty \quad \boxed{\mathbf{B}} - \frac{2}{5} \quad \boxed{\mathbf{C}} \quad \frac{2}{5} \quad \boxed{\mathbf{D}} \quad \frac{1}{5} \quad \boxed{\mathbf{E}} - \frac{1}{5} \quad \boxed{\mathbf{F}} \quad 0$

Quesito n. 10 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha:

 $\boxed{ \triangle } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ e \ b_n = o(c_n) \quad \boxed{ E } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ E } \ b_n = o(a_n) \quad \boxed{ E } \ b_n =$

Quesito n. 11 Sia $A = [-3,3] \cap \mathbf{Q}$. Si considerino le affermazioni:

(a) 0 è un punto interno per A;

(b) 0 è un punto di accumulazione per A;

(c) $\sqrt{3}$ è un punto interno per A. Allora quelle vere sono:

A solo (a) B solo (a) e (c) C solo (a) e (b) D solo (b) E tutte F nessuna

Quesito n. 12 Il $\lim_{n \to +\infty} n \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a:

 $A_0 = \frac{1}{6} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{2}{3}$

Quesito n. 13 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x).

 $\underbrace{ \begin{bmatrix} \underline{\mathbf{A}} \ \frac{2xe^{x^2}}{1+e^{x^2}} & \underline{\mathbf{B}} \ \frac{1}{1+e^{2x}} & \underline{\mathbf{C}} \ \frac{1}{2xe^{2x}} & \underline{\mathbf{D}} \ \frac{e^{x^2}}{1+e^{x^2}} & \underline{\mathbf{E}} \ \frac{e^{2x}}{1+e^{x^2}} & \underline{\mathbf{F}} \ \frac{1}{1+e^{x^2}} \\ \underline{\mathbf{Quesito n. 14 \ Calcolare \ \lim_{x\to 0^+} \frac{\ln(1+x^3) \sin \frac{1}{x}}{e^{x^2}-1}} }$

A = 1 $B = \infty$ C = 0 $D = \infty$ $E = \infty$ $E = \infty$

Quesito n. 15 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 & \text{per } n \text{ pari,} \\ n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni

(a) $a_n = o(n^4) \text{ per } n \to +\infty;$

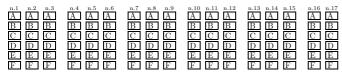
(b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$.

Allora quelle vere sono:

A tutte B solo (c) C solo (a) e (b) D solo (a) e (c) E nessuna F solo (a)

Quesito n. 16 Si considerino le affermazioni:

(a) $e^{2x} - e^x \approx x \text{ per } x \to 0;$ (b) $e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;$


(c) $e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.$ Allora quelle vere sono:

 $oxed{A}$ solo (b) $oxed{B}$ solo (c) $oxed{C}$ solo (a) $oxed{D}$ tutte $oxed{E}$ nessuna $oxed{F}$ solo (a) e (c)

Quesito n. 17 Il $\lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}}$ vale

 $A\sqrt{2}$ B_2 C_0 $D_{\frac{1}{2}}$ $E_{+\infty}$ F non esiste

Compito n.110 Cognome: Nome: Matr:


```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.111 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                            Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. \overline{1} Date le successioni (a_n), \overline{(b_n)} e (c_n) definite da a_n=(2n)!, b_n=(n+1)^n e c_n=n^{n+1}, si ha:
\boxed{\textbf{A}} \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{\textbf{B}} \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{\textbf{C}} \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n 
Quesito n. 2 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
    (a) a_n \approx b_n \text{ per } n \to +\infty
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
    (c) a_n = O(b_n)
    (d) a_n = o(b_n)
oxed{A} solo (c) oxed{B} solo (d) oxed{C} solo (a), (b) e (c) oxed{D} nessuna oxed{E} solo (c) e (d) oxed{F} solo (b) e (c)
 Quesito n. 3 Il \lim_{x \to \infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right) vale
A - 1 \quad B \quad 0 \quad C - \frac{1}{3} \quad D - \infty \quad E - \frac{1}{2} \quad F \quad 1
Quesito n. 4 Il \lim_{n\to+\infty} \frac{n^2}{3} \left(1-\cos\frac{2}{n}\right) è uguale a:
A + \infty B_1 C_{\frac{2}{3}} D_0 E_{\frac{1}{6}} F_{\frac{1}{3}}
Quesito n. 5 Calcolare \lim_{x \to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x}
Quesito n. 6 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \text{ pari,} \\ \ln n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) a_n = o(n!) per n \to +\infty;
  (b) a_n = o(2^n) per n \to +\infty;
 (c) (a_n) è una successione crescente.
Allora quelle vere sono:
A nessuna B tutte C solo (c) D solo (a) e (b) E solo (a) F solo (a) e (c)
                                                   \lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}} \quad \text{è uguale a:}
\boxed{\mathbf{A}}_0 \boxed{\mathbf{B}}_{+\infty} \boxed{\mathbf{C}} \frac{7}{3} \boxed{\mathbf{D}} \frac{2}{3} \boxed{\mathbf{E}} \frac{2}{5} \boxed{\mathbf{F}} \frac{7}{5}
Quesito n. 8 Il \lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x} è uguale a:
A - \frac{2}{5} B \frac{2}{5} C_0 D \frac{1}{5} E - \frac{1}{5} F + \infty
Quesito n. 9 Sia A = \mathbf{R} - \mathbf{N}. Si considerino le affermazioni:
 (a) 1 è un punto di accumulazione per A;
  (b) 1 è un punto di frontiera per A;
 (c) 1 è un punto interno per A. Allora quelle vere sono:
A solo (a) B solo (a) e (b) C solo (a) e (c) D solo (c) E nessuna F solo (b)
Quesito n. 10 Si considerino le affermazioni:

(a) e^{2x} - e^x \approx x \text{ per } x \to 0;

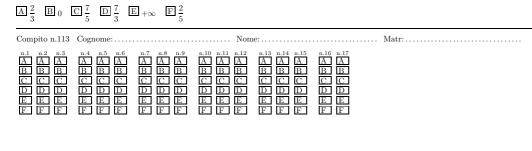
(b) e^{2x} - e^x = x + o(x) \text{ per } x \to +\infty;

(c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.

Allora quelle vere sono:
A solo (a) B solo (a) e (c) C tutte D nessuna E solo (b) F solo (c)
 Quesito n. 11 Sia C un sottoinsieme chiuso e non vuoto di \mathbf R. Si considerino le affermazioni

(a) in ogni caso C è compatto;
(b) in ogni caso C contiene tutti i suoi punti di accumulazione;

 (c) in ogni caso C non ha punti interni.
A (b) e vera e (a) e (c) sono false B (a), (b) e (c) sono tutte vere C (a) è vera e (b) e (c) sono false D (a), (b) e (c) sono tutte false E (c) è vera e (a) e (b) sono
false F 2 affermazioni sono vere ed una è falsa
 Quesito n. 12 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 2^n \ln n, b_n = n^5 \ln n e c_n = 2^n, si has
 \boxed{ \textbf{A} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{B} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{C} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \
Quesito n. 13 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a:
Quesito n. 14 Quanto vale il limite \lim_{x\to +\infty} x \ln \left(1 + \frac{1}{x+3}\right)?
A non esiste Be^3 C_1 D_{+\infty} E_3 F_0
Quesito n. 15 Il \lim_{x\to+\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
A 0 B non esiste \mathbb{C}\sqrt{2} \mathbb{D}\frac{1}{2} \mathbb{E}+\infty \mathbb{F} 2
Quesito n. 16 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ g \circ h è uguale a
 \underline{\mathbf{A}} \, \left( \ln^2 x \right)^{\ln^2 x} \quad \underline{\mathbf{B}} \, \left( \ln x \right)^{2 \ln x} \quad \underline{\mathbf{C}} \, x^2 \ln^2 x \quad \underline{\mathbf{D}} \, 2 x^2 \ln |x| \quad \underline{\mathbf{E}} \, 2 x \ln x \quad \underline{\mathbf{F}} \, \left( \ln x^2 \right)^{\ln x^2} 
 Quesito n. 17 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
\boxed{\mathbf{A}} - \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{B}} \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{C}} \ \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{D}} \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{\mathbf{E}} \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{\mathbf{F}} \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}}
A A A A B B B C C C C D D D D E E E E F F F
                                                                                          A A A A B B B C C C C D D D D E E E E F F F
                                                                                                                                            | n.10 | n.11 | n.12 |
| A | A | A |
| B | B | B |
| C | C | C |
| D | D | D |
| E | E | E |
| F | F | F |
```


```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
 Compito n.112 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                    Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
                                     \lim_{n \to +\infty} \frac{7 \sqrt[n]{(2n)!} + 2 \left(n^{\ln n}\right)^2}{3n^{\ln n^2} + 5 \ln \left((3n)!\right)}
 Quesito n. 1
                                                                                                  è uguale a:
A \frac{7}{5} B \frac{2}{3} C_0 D \frac{7}{3} E_{+\infty} F \frac{2}{5}
 \overline{\textbf{Quesito n. 2}} \ \ \text{Sia $A$ un sottoinsieme aperto e non vuoto di $\mathbf{R}$. Si considerino le affermazioni:}
  (a) A è sempre un intervallo;
  (b) A non ha mai punti isolati;
 (c) il complementare di A è sempre chiuso.
 (a) è vera e (b) e (c) sono false (a), (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (a), (b) e (c) sono tutte vere (a) e (b) sono
 false \boxed{\mathbb{F}} 2 affermazioni sono vere ed una è falsa
 Quesito n. 3 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
 Quesito n. 4 Calcolare \lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}
 Quesito n. 5 Date a_n = \frac{2}{n} e b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}. Dire quali delle seguenti affermazioni sono corrette.
   (a) a_n \approx b_n \text{ per } n \to +\infty;
   (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
   (c) a_n = O(b_n)
   (d) a_n = o(b_n)
 Quesito n. 6 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
A_{-1} B_{\frac{1}{2}} C_{\frac{3}{4}} D_{-\infty} E_{\frac{1}{4}} F_3
 Quesito n. 8 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases} Si considerino le affermazioni:
 (b) a_n = o(2^n) per n \to +\infty;
(c) \sqrt{n} = o(a_n) per n \to +\infty.
 Allora quelle vere sono:
 A solo (c) B solo (a) e (b) C nessuna D tutte E solo (a) e (c) F solo (a)
 Quesito n. 9 Il \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
 A + \infty B = \frac{1}{2} C_1 D_{-1} E_0 F_{-\frac{1}{2}}
 Quesito n. 10 Si considerino le affermazioni
 (a) e^x - 1 \approx x \text{ per } x \to 0;

(b) e^x - 1 = o(x) \text{ per } x \to 0;

(c) e^x - 1 = x + o(x) \text{ per } x \to 0;
 Allora quelle vere sono:
 A solo (b) B solo (b) e (c) C solo (a) e (c) D nessuna E solo (c) F solo (a)
 Quesito n. 11 Il \lim_{n\to+\infty} \left(e+\frac{1}{n^2}\right)^n è uguale a:
 A \ 2e \ B + \infty \ C \ e + 1 \ D \ 1 \ E \ e^e \ F \ e
 Quesito n. 12 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
Quesito n. 13 Il \lim_{n\to+\infty} \frac{\sin\frac{3}{n^2}}{\left(1-\cos\frac{3}{n}\right)} è uguale a
 A_1 B_0 C_{\frac{1}{6}} D_{+\infty} E_{\frac{2}{3}} F_{\frac{1}{3}}
 Quesito n. 14 Il \lim_{x \to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1 + x^2}} vale
 A + \infty B non esiste C \sqrt{2} D 2 E \frac{1}{2} F 0
 Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = n^{100}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si ha:
  \boxed{ \triangle } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \boxdot } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \smile } \ c_n = o(b_n) \in b_n = o(a_n) \quad \boxed{ \smile } \ b_n = o(a_n) \in a_n = o(c_n) \quad \boxed{ \smile } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(b_n) \in c_n = o(b_n) \quad \boxed{ \smile } \ b_n = o(b_n)
 Quesito n. 16 Sia A = [-3, 3] \cap \mathbf{Q}. Si considerino le affermazioni:
  (a) 0 è un punto interno per A;
  (b) 0 è un punto di accumulazione per A
  (c) \sqrt{3} è un punto interno per A.
 Allora quelle vere sono:
 A solo (a) e (c) B solo (b) C solo (a) e (b) D solo (a) E tutte F nessuna
 Quesito n. 17 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{\sqrt[4]{n}}{\ln n}, b_n = \sqrt[8]{n} e c_n = \ln n, si ha:
```

 $\boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{C} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \ \textbf{e} \ b_n = o(c_n)$

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.113 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare $f'(x)$.
$ \underline{\mathbf{A}} \frac{e^{x^2}}{1 + e^{x^2}} \underline{\mathbf{B}} \frac{2xe^{x^2}}{1 + e^{x^2}} \underline{\mathbf{C}} \frac{1}{2xe^{2x}} \underline{\mathbf{D}} \frac{e^{2x}}{1 + e^{x^2}} \underline{\mathbf{E}} \frac{1}{1 + e^{x^2}} $
Quesito n. 2 Il $\lim_{x\to+\infty} \frac{2x^2 + \cos x + e^x \cos x}{3x + \sqrt{1 + 2x^4}}$ vale
$\boxed{A}\sqrt{2} \boxed{B}_{+\infty} \boxed{C}_0 \boxed{D}_{\frac{1}{2}} \boxed{E}_2 \boxed{F}_{\text{non esiste}}$
Quesito n. 3 Il $\lim_{n \to +\infty} \frac{n^2}{3} \left(1 - \cos \frac{2}{n}\right)$ è uguale a:
Quesito n. 4 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+\sin^2 x)\sin\frac{1}{x}}{e^x-1}$
$A \to B$ $B \to C \to D$ $A \to C$
$oxed{A}$ solo (a) e (c) $oxed{E}$ solo (b) $oxed{C}$ solo (a) $oxed{D}$ solo (a) e (b) $oxed{E}$ solo (c) $oxed{F}$ nessuna Quesito n. 6 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha:
$\overline{A} + \infty$ \overline{B} 0 \overline{C} 3 \overline{D} e^3 \overline{E} non esiste \overline{F} 1 Quesito n. 8 Date $a_n = \frac{4}{n}$ e $b_n = \frac{1}{n + (-1)^n}$. Dire quali delle seguenti affermazioni sono corrette:
n $n+(-1)^n$ (a) $a_n \approx b_n \text{ per } n \to +\infty;$
(b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};$
(c) $a_n = O(b_n)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A solo (c) B solo (d) C nessuna D solo (b) e (c) E solo (c) e (d) F solo (a), (b) e (c) Quesito n. 9 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni: (a) il complementare di C è sempre aperto; (b) in ogni caso C contiene la sua frontiera; (c) C può avere punti isolati. Allora:
A (a), (b) e (c) sono tutte vere B 2 affermazioni sono vere ed una è falsa C (a) è vera e (b) e (c) sono false D (a), (b) e (c) sono tutte false E (b) è vera e (a) e (c) sono false
Quesito n. 10 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a:
$A = \frac{2}{5}$ $B = \frac{1}{5}$ $C = \frac{2}{5}$ $D = \infty$ $E = \frac{1}{5}$ $E = 0$
Quesito n. 11 $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale
$A - \infty$ $B - \frac{1}{2}$ $C - \frac{1}{3}$ D_0 E_{-1} F_1
Quesito n. 12 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n \ln n$, $b_n = n \sqrt{n}$ e $c_n = \frac{n^2}{\ln n}$, si ha:
AAA TV


```
Compito n.114 del test di preselezione per il I esonero
                                                                                                                                                                                     Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Calcolare \lim_{x\to 0^{\pm}} \frac{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}{\left(1+\sin^2\frac{1}{x}\right)\left(e^x-1\right)}
A = 0 B = 1 C = non esiste  <math>D = \infty E = -1
Quesito n. 2 Il \lim_{n\to+\infty} \left(1+\frac{1}{en}\right)
Quesito n. 3 Quanto vale il limite \lim_{x\to +\infty} x \ln\left(1+\frac{1}{x+3}\right)?
oxed{A} 0 oxed{B} 1 oxed{C} +\infty oxed{D} non esiste oxed{E} 3 oxed{F} e^3 oxed{Q} uesito n. 4 Sia A un sottoinsieme non vuoto di oxed{R}. Quali, tra le seguenti affermazioni, sono vere

 (a) se A è aperto allora la sua frontiera è vuota;

(a) se A è aperto allora non contiene nessuno dei suoi punti di frontiera;
(c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione.

oxed{\mathbb{A}} solo (b) oxed{\mathbb{B}} solo (b) e (c) oxed{\mathbb{C}} nessuna oxed{\mathbb{D}} tutte oxed{\mathbb{E}} solo (a) oxed{\mathbb{F}} solo (c)
Quesito n. 5 Date le successioni (a_n), (b_n) e (c_n) definite da \overline{a_n = n^{100}}, b_n = 2^n e c_n = 100^{\sqrt{n}}, si ha:
 \boxed{ \textbf{A} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(a_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(c_n) \quad \boxed{ \textbf{C} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{E} } \ a_n = o(c_n) \ \textbf{e} \ c_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) 
Quesito n. 6 Si considerino le affermazioni:
(a) \ln(1+x) = o(x) \text{ per } x \to 0;
(b) \ln(1-x) = -x + o(x) \text{ per } x \to 0;
(c) \ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.
Allora quelle vere sono
A solo (c) B nessuna C solo (a) D solo (b) E tutte F solo (a) e (c)
                         \lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}
A = \frac{2}{5} B = \frac{7}{5} C = \frac{7}{3} D + \infty E_0 = \frac{2}{3}
Quesito n. 8 Sia A = (-\infty, 0) \cup \{2^{-n} \mid n \in \mathbb{N}\}. Si considerino le affermazioni:
 (a) 0 è un punto di accumulazione per A;

(b) -2 è un punto di accumulazione per A;
(c) 2<sup>-100</sup> è un punto di accumulazione per A.
Allora quelle vere sono:

A tutte B solo (b) C solo (a) e (c) D solo (a) e (b) E solo (a) F nessuna
Quesito n. 9 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
A + \infty B = 0 C = \frac{3}{2} D = 2 E non esiste in R^* F = \frac{1}{2}
Quesito n. 10 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, f \circ h \circ g è uguale a
Quesito n. 11 Il \lim_{n \to +\infty} n \left( e^{\frac{3}{n}} - e^{\frac{2}{n}} \right) è uguale a:
\boxed{\mathbf{A}} \frac{2}{3} \quad \boxed{\mathbf{B}} \quad \boxed{\mathbf{C}} \frac{1}{3} \quad \boxed{\mathbf{D}} \quad \boxed{\mathbf{C}} \frac{1}{6} \quad \boxed{\mathbf{F}} + \infty
Quesito n. 12 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
 \boxed{ \mathbb{A} \ \frac{1}{\sqrt{3\sqrt{x}}} \quad \boxed{ \mathbb{B} \ -\frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{C} \ \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{D} \ \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \boxed{ \mathbb{E} \ \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{ \mathbb{F} \ \frac{1}{2\sqrt{1+x\sqrt{x}}} } } 
(a) a_n = o(n^4) per n \to +\infty;
 (b) a_n = o(n^2) per n \to +\infty;
(c) \lim_{n \to +\infty} a_n = +\infty.
A nessuna B solo (a) e (b) C tutte D solo (a) e (c) E solo (a) F solo (c)
Quesito n. 14 Date a_n = \frac{1}{n^2} e b_n = \frac{1}{n}. Dire quali delle seguenti affermazioni sono corrette:
 (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
  (c) a_n = O(b_n)
 (d) a_n = o(b_n)
Quesito n. 15 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \ln^2 n, b_n = \frac{n}{\ln n} e c_n = \sqrt[3]{n}, si ha:
 \boxed{ \triangle } \ c_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ \boxdot } \ a_n = o(b_n) \ e \ b_n = o(c_n) \quad \boxed{ \boxdot } \ b_n = o(a_n) \ e \ a_n = o(b_n) 
Quesito n. 16 Il \lim_{x\to +\infty} \frac{2x\cos x + e^{-x}}{3x + \sqrt{1+2x^4}} vale
\boxed{A} \frac{1}{2} \boxed{B} 2 \boxed{C} + \infty \boxed{D} \sqrt{2} \boxed{E} \text{ non esiste} \boxed{F} 0
Quesito n. 17 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2} - \sqrt{x^3 + 1} \right) vale
f A_1 \quad f B_{-1} \quad f C_{-\frac{1}{2}} \quad f D_0 \quad f E_{\frac{1}{2}} \quad f F_{+\infty}
Compito n.114 Cognome:
                                                                                              | n.10 | n.11 | n.12 | A | A | A | B | B | B | C | C | C | D | D | D | E | E | E | E |
                                               A
B
C
D
                                                             A
B
C
```

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 Dicembre 2015
Compito n.115 del test di preselezione per il I esonero Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 Si considerino le affermazioni: (a) $\tan x - \sin x = o(x)$ per $x \to 0$;
(b) $\sin x = o(x)$ per $x \to 0$; (c) $\sin x \approx \tan x$ per $x \to 0$.
Allora quelle vere sono: A nessuna B solo (c) C tutte D solo (b) E solo (a) e (c) F solo (a)
Quesito n. 2 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 4^n$, $b_n = n^4 2^n$ e $c_n = \frac{8^n}{n^4}$, si ha:
As $a = a(k)$ as $b = a(k)$ as $b = a(k)$ as $b = a(k)$ as $a = a(k)$. By $a = a(k)$ as $a = a(k)$ Eq. (a) as $a = a(k)$ Eq. (b) as $a = a(k)$ Eq. (c) as $a = a(k)$
$ \underline{\underline{A}} c_n = o(b_n) e \ b_n = o(a_n) \underline{\underline{B}} \ a_n = o(b_n) e \ b_n = o(c_n) \underline{\underline{C}} \ a_n = o(c_n) e \ c_n = o(b_n) \underline{\underline{D}} \ c_n = o(a_n) e \ a_n = o(b_n) \underline{\underline{E}} \ b_n = o(a_n) e \ a_n = o(c_n) \underline{\underline{F}} \ b_n = o(c_n) e \ c_n = o(a_n) $ Quesito n. 3 Quanto vale il limite $\lim_{x \to 0^+} x \ln \left(1 + \frac{3}{x} \right)$?
A 1 B $+\infty$ C e^3 D non esiste E 0 F 3 Quesito n. 4 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:
$\boxed{ \triangle \ c_n = o(b_n) \in b_n = o(a_n) \boxed{\mathbb{B}} \ a_n = o(c_n) \in c_n = o(b_n) \boxed{\mathbb{C}} \ b_n = o(c_n) \in c_n = o(a_n) \boxed{\mathbb{D}} \ b_n = o(a_n) \in a_n = o(c_n) \boxed{\mathbb{E}} \ a_n = o(b_n) \in b_n = o(c_n) \boxed{\mathbb{E}} \ c_n = o(a_n) \in a_n = o(b_n)$ $\boxed{\mathbf{Quesito n. 5} \boxed{\mathbb{I}} \ \lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2} - \sqrt{x^3 + x} \right) \text{ vale}}$
Quesito n. 7 Sia C un sottoinsieme non vuoto di R. Si considerino le affermazioni:
(a) se C è chiuso e limitato allora è anche compatto; (b) se C è chiuso allora ogni successione $(a_n) \subset C$ converge;
(c) se C è chiuso allora anche il suo complementare è chiuso. Allora:
A 2 affermazioni sono vere ed una è falsa
Quesito n. 8 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^2)\sin\frac{1}{x}}{e^x-1}$
$A + \infty$ B 1 C non esiste D -1 E 0 F 3
Quesito n. 9 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A ;
 (b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono:
$oxed{\mathbb{A}}$ solo (a) e (c) $oxed{\mathbb{B}}$ solo (c) $oxed{\mathbb{C}}$ solo (b) $oxed{\mathbb{D}}$ solo (a) e (b) $oxed{\mathbb{E}}$ nessuna $oxed{\mathbb{F}}$ solo (a) Quesito n. 10 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a
Quesito n. 10 Siano $f(x) = \ln(x)$, $g(x) = x^2 e h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di x per i quali è definita, $h \circ g \circ f$ è uguale a $A \times 2 \ln^2 x + B \times 2 x \ln x + C \cdot (\ln^2 x)^{\ln^2 x} + C \cdot (\ln x^2)^{\ln x^2} + C \cdot (\ln x^2)^{\ln x} + C \cdot (\ln$
Quesito n. 11 Date $a_n = \frac{3}{n}$ e $b_n = \frac{3 + (-1)^n}{n}$. Dire quali delle seguenti affermazioni sono corrette:
Quesito n. 11 Date $a_n = \frac{1}{n}$ e $b_n = \frac{1}{n}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n$ per $n \to +\infty$;
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell$ finito e non nullo;
$n \to +\infty \ o_n$ (c) $a_n = O(b_n)$
(d) $a_n = o(b_n)$
$oxed{A}$ solo (c) $oxed{B}$ nessuna $oxed{C}$ solo (b) e (c) $oxed{D}$ solo (d) $oxed{E}$ solo (a), (b) e (c) $oxed{F}$ solo (c) e (d)
Quesito n. 12 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:
(a) $\sup_{n \in \mathbb{N}} a_n = +\infty$; (b) $\lim_{n \to \infty} a_n = +\infty$;
(b) $\lim_{n \to +\infty} a_n = +\infty$; (c) (a_n) è una successione crescente.
Allora quelle vere sono: A solo (a) B solo (a) e (c) C solo (a) e (b) D tutte E solo (c) F nessuna
Quesito n. 13 Il $\lim_{n \to +\infty} \left(e + \frac{1}{n^2} \right)^n$ è uguale a:
A 0 B 2 C non esiste $D\sqrt{2}$ E $\frac{1}{2}$ F $+\infty$
Quesito n. 15 $\lim_{n \to +\infty} \frac{7n^{2n} + 2(n!)^2}{3(\sqrt{n})^{3n} + 5n^{\ln n}}$ è uguale a:
Quesito n. 16 Il $\lim_{n \to +\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}} \right)$ è uguale a:

 Compite n.115
 Cognome:
 Nome:
 Matr:

Compito	n 116	del	test	di	preselezione	ner il I	esonero

Quesito n. 1 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \ln(n!)$, $b_n = n$ e $c_n = n^2$, si ha:

 $\boxed{ \textbf{A} } \ a_n = o(b_n) \in b_n = o(c_n) \quad \boxed{ \textbf{B} } \ c_n = o(a_n) \in a_n = o(b_n) \quad \boxed{ \textbf{C} } \ a_n = o(c_n) \in c_n = o(b_n) \quad \boxed{ \textbf{D} } \ b_n = o(a_n) \in a_n = o(c_n) \quad \boxed{ \textbf{E} } \ b_n = o(c_n) \in c_n = o(a_n) \quad \boxed{ \textbf{F} } \ c_n = o(b_n) \in b_n = o(a_n)$

Quesito n. 2 $\lim_{n \to +\infty} \frac{7n^n + 2 \cdot n!}{3e^{n \ln n} + 5e^{\ln^2 n}}$ è uguale a:

 $\mathbb{A} \frac{2}{3} \mathbb{B} \frac{2}{5} \mathbb{C} + \infty \mathbb{D} \frac{7}{5} \mathbb{E}_0 \mathbb{F} \frac{7}{3}$

Quesito n. 3 Il $\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + 1} \right)$ vale

 $A_0 B_{-\frac{1}{2}} C_{\frac{1}{2}} D_{+\infty} E_{-1} F_1$

Quesito n. 4 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{1}{(-1)^n n - 1}$. Dire quali delle seguenti affermazioni sono corrette:

(a) $a_n \approx b_n \text{ per } n \to +\infty;$

(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$

(c) $a_n = O(b_n)$

(d) $a_n = o(b_n)$

 $oxed{A}$ solo (c) $oxed{B}$ nessuna $oxed{C}$ solo (b) e (c) $oxed{D}$ solo (d) $oxed{E}$ solo (a), (b) e (c) $oxed{F}$ solo (c) e (d)

Quesito n. 5 Il $\lim_{x\to +\infty} \frac{2\sqrt{2}x + \cos x + e^{-x}}{x + \sqrt{1+x^2}}$ vale

 $A = \frac{1}{2}$ B non esiste C = 0 D $+\infty$ E 2 F $\sqrt{2}$

Quesito n. 6 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ g \circ h$ è uguale a

 $\boxed{ \textcolor{red}{\mathbf{A}} \left(\ln^2 x \right)^{\ln^2 x} } \quad \boxed{ \textcolor{red}{\mathbf{B}} } \ 2x \ln x \quad \boxed{ \textcolor{red}{\mathbf{C}} } \left(\ln x \right)^{2 \ln x} \quad \boxed{ \textcolor{red}{\mathbf{D}} } \ 2x^2 \ln |x| \quad \boxed{ \textcolor{red}{\mathbf{E}} } \ x^2 \ln^2 x \quad \boxed{ \textcolor{red}{\mathbf{F}} } \left(\ln x^2 \right)^{\ln x^2}$

Quesito n. 7 Il $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a:

 $\boxed{A} \stackrel{4}{\cancel{3}} \boxed{B} 4 \boxed{C} 8 \boxed{D} \stackrel{2}{\cancel{3}} \boxed{E} \frac{8}{\cancel{3}} \boxed{F} 2$

Quesito n. 8 Si considerino le affermazioni: (a) $e^x - 1 \approx x$ per $x \to 0$; (b) $e^x - 1 = o(x)$ per $x \to 0$;

(c) $e^x - 1 = x + o(x) \text{ per } x \to +\infty$

Allora quelle vere sono:

A nessuna B solo (a) C solo (a) e (c) D solo (b) E solo (c) F solo (b) e (c)

Quesito n. 9 Il $\lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n$ è uguale a:

 $A e B \sqrt{e} C e^e D e^2 E + \infty F$

Quesito n. 10 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni:

(a) in ogni caso C è compatto;

(b) in ogni caso C contiene tutti i suoi punti di accumulazione: (c) in ogni caso C non ha punti interni.

(a) (b) e (c) sono tutte false (b) è vera e (a) e (c) sono false (c) è vera e (a) e (b) sono false (d) (e) sono tutte vere (e) e (c) sono tutte vere (false) (

 $A = \frac{1}{6} B_0 C = \frac{1}{3} D_{+\infty} E_1 E_{\frac{2}{3}}$

Quesito n. 12 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^n & \text{per } n \leq 100, \\ \ln n & \text{per } n > 100. \end{cases}$ Si considerino le affermazioni:

(a) $a_n = o(n!)$ per $n \to +\infty$; (b) $a_n = o(2^n)$ per $n \to +\infty$; (c) $\sqrt{n} = o(a_n)$ per $n \to +\infty$

Allora quelle vere sono:

A nessuna B solo (a) C solo (a) e (c) D tutte E solo (a) e (b) F solo (c)

Quesito n. 13 Quanto vale il limite $\lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)$?

Quesito n. 14 Sia $f(x) = \frac{1}{\ln(1 + \frac{1}{x})}$. Calcolare f'(x)

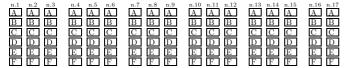
Quesito n. 15 Sia $A = \mathbf{Q} \cup (-5, 5)$. Si considerino le affermazioni

(a) 2 è un punto di accumulazione per A;(b) 5 appartiene alla chiusura di A;

(c) 9 è un punto di accumulazione per A.

Allora quelle vere sono:

A solo (b) B solo (a) C tutte D solo (a) e (b) E nessuna F solo (a) e (c)


Quesito n. 16 Calcolare $\lim_{x\to 0^+} \frac{(e^x-1)\left(1+\sin^2\frac{1}{x}\right)}{\ln(1+\sin^2x)}$

 $A_{-\infty}$ B_1 C_0 $D_{+\infty}$ $E_{non esiste}$ F_{-1}

Quesito n. 17 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{2^n}{n}$, $b_n = \frac{2^n}{\ln n}$ e $c_n = n^8$, si ha:

 $\boxed{ \triangle } \ a_n = o(c_n) \ \ e \ c_n = o(b_n) \ \ \boxed{ E } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \ \ \boxed{ E } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \ \ \boxed{ E } \ b_n = o(a_n) \ \ \boxed{ E$

Compito n.116 Cognome:


```
Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015
  Compito n.117 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
 Quesito n. \overline{\mathbf{1}} Date le successioni (a_n), \overline{(b_n)} e (c_n) definite da a_n=(2n)!, b_n=(n+1)^n e c_n=n^{n+1}, si ha:
  \boxed{ \textbf{A} } \ b_n = o(a_n) \ \textbf{e} \ a_n = o(c_n) \quad \boxed{ \textbf{B} } \ c_n = o(a_n) \ \textbf{e} \ a_n = o(b_n) \quad \boxed{ \textbf{C} } \ b_n = o(c_n) \ \textbf{e} \ c_n = o(a_n) \quad \boxed{ \textbf{D} } \ a_n = o(b_n) \quad \boxed{ \textbf{E} } \ a_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \ \textbf{e} \ b_n = o(b_n) \quad \boxed{ \textbf{E} } \ c_n = o(b_n) \quad
 Quesito n. 2 Il \lim_{n \to +\infty} n \left( e^{\frac{3}{n}} - e^{\frac{2}{n}} \right) è uguale a:
 A_0 \quad B \stackrel{?}{=} \quad C \stackrel{1}{=} \quad D + \infty \quad E_1 \quad F \stackrel{1}{=} \quad C \stackrel{?}{=} \quad C \stackrel{?}{=
 Quesito n. 3 Sia f(x) = \sin^3(\ln x). Calcolare f'(x).
 \boxed{\mathbf{A}}\sin^3\left(\frac{1}{x}\right) \boxed{\mathbf{B}}\frac{3}{x}\sin^2\left(\ln x\right)\cos\left(\ln x\right) \boxed{\mathbf{C}}\cos^3\left(\ln x\right) \boxed{\mathbf{D}}\frac{3}{x}\cos^2\left(\ln x\right) \boxed{\mathbf{E}}3\cos^2\left(\frac{1}{x}\right) \boxed{\mathbf{E}}3\sin^2\left(\ln x\right)\cos\left(\ln x\right)
 Quesito n. 4 Si considerino le affermazioni:

(a) e^{2x} - e^x \approx x per x \to 0;

(b) e^{2x} - e^x = x + o(x) per x \to +\infty;
 (c) e^{\frac{1}{x}} - 1 \approx \frac{1}{x} \text{ per } x \to +\infty.
Allora quelle vere sono:
 A solo (b) B solo (c) C nessuna D solo (a) E tutte F solo (a) e (c)
 Quesito n. 5 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = 4^n, b_n = n^4 2^n e c_n = \frac{8^n}{n^4}, si ha:
 \boxed{ \underline{\mathbf{A}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ b_n = o(c_n) \ \mathbf{e} \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(a_n) \ \mathbf{e}
 Quesito n. 6 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, g \circ h \circ f è uguale a
  \boxed{ \textbf{A} \left( \ln x^2 \right)^{\ln x^2} } \quad \boxed{ \textbf{B} \left( \ln x \right)^{2 \ln x} } \quad \boxed{ \textbf{C} } \ 2x \ln x \quad \boxed{ \textbf{D} } \ x^2 \ln^2 x \quad \boxed{ \textbf{E} } \left( \ln^2 x \right)^{\ln^2 x} \quad \boxed{ \textbf{F} } \ 2x^2 \ln |x| 
 Quesito n. 7 Il \lim_{n\to+\infty} \left(1-\frac{1}{en}\right)^{en+\pi} è uguale a:
 A = \begin{bmatrix} 1 \\ e \end{bmatrix} B = \begin{bmatrix} 1 \\ e \end{bmatrix} C = \begin{bmatrix} e^{-\pi} \\ e \end{bmatrix} C = \begin{bmatrix} e^{-e+\pi} \\ e \end{bmatrix} C = \begin{bmatrix} e^{-e+\pi} \\ e \end{bmatrix}
 Quesito n. 8 Sia A = [-3, 3] \cap \mathbf{Q}. Si considerino le affermazioni
   (a) 0 è un punto interno per A:
   (b) 0 è un punto di accumulazione per A;
   (c) \sqrt{3} è un punto interno per A.
   Allora quelle vere sono
 A solo (a) e (c) B solo (b) C nessuna D tutte E solo (a) e (b) F solo (a)
 Quesito n. 9 Il \lim_{x\to 0} \frac{x^2 + \cos x - e^{x^3}}{\sin x^2} è uguale a:
 \boxed{A} \frac{3}{2} \boxed{B} \text{ non esiste in } \mathbf{R}^* \boxed{C} \frac{1}{2} \boxed{D} + \infty \boxed{E} 2 \boxed{F} 0
 Quesito n. 10 Sia A un sottoinsieme aperto e non vuoto di R. Si considerino le affermazioni:
   (a) A è sempre un intervallo;
   (b) A non ha mai punti isolati;
   (c) il complementare di A è sempre chiuso.
   Allora:
 A (b) è vera e (a) e (c) sono false B (c) è vera e (a) e (b) sono false C (a), (b) e (c) sono tutte false D (a), (b) e (c) sono tutte vere E (a) è vera e (b) e (c) sono
 false 🖺 2 affermazioni sono vere ed una è falsa
                                                                                                                                                                                                                                     per n pari,
 Quesito n. 11 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ part,} \\ 2n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
 (a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
   (c) (a<sub>n</sub>) è una successione crescente.
   Allora quelle vere sono:
 A tutte B solo (c) C solo (a) D solo (a) e (c) E solo (a) e (b) F nessuna
 Quesito n. 12 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{\frac{x}{2}}}{3x + \sqrt{xe^x + x^4}} vale
 A_{+\infty} B\sqrt{2} C_{\text{non esiste}} D_0 E_2 F^{\frac{1}{2}}
 Quesito n. 13 Quanto vale il limite \lim_{x\to 0} \frac{1}{x^2} \ln \left(1+\frac{x}{3}\right)?
 A non esiste B 3 C 0 D 1 E e^3 F +\infty
 Quesito n. 14 \lim_{n\to+\infty}\frac{7\ln(n!)+2\left(n+\sqrt{n}\right)^{\ln n}}{3\ln\left(1+e^{n^2}\right)+5n^{\ln n}}\quad \text{è uguale a:}
\boxed{A} \frac{7}{5} \boxed{B} + \infty \boxed{C} \frac{7}{3} \boxed{D} \frac{2}{5} \boxed{E} \frac{2}{3} \boxed{F}_0
 Quesito n. 15 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{e^x-1}
 A non esiste B + \infty C - 1 D - \infty E_0 F_1
 Quesito n. 16 Date a_n = \frac{4}{n} e b_n = \frac{1}{n + (-1)^n}. Dire quali delle seguenti affermazioni sono corrette:
      (a) a_n \approx b_n \text{ per } n \to +\infty;
     (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}
      (c) a_n = O(b_n)
 Quesito n. 17 Il \lim_{x \to +\infty} \sqrt{x} \left( \sqrt{x^3 + 2x} - \sqrt{x^3 - x} \right) vale
 A + \infty B_1 C - \frac{1}{2} D \frac{3}{2} E - 1 F_0
```

 Compite n.117
 Cognome:
 Nome:
 Matr:

 n.1
 n.2
 n.3
 n.4
 n.5
 n.6
 n.7
 n.8
 n.9
 n.10
 n.11
 n.12
 n.13
 n.14
 n.15
 n.16
 n.17

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A</t

Analisi Matematica I per Ing. Edilizia ed Edile-Arch. - Test di Preselezione per il I Esonero - 1 Dicembre 2015 Compito n.118 del test di preselezione per il I esonero $Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3$ Quesito n. 1 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, $f \circ h \circ g$ è uguale a Quesito n. 2 Il $\lim_{n\to+\infty} \frac{1}{n} \left(e^{\frac{1}{2n}} - e^{\frac{1}{3n}}\right)$ è uguale a: $A_{+\infty}$ $B_{\frac{2}{3}}$ C_0 $D_{\frac{1}{3}}$ E_1 $F_{\frac{1}{6}}$ per $n \le 100$, Si considerino le affermazioni: per n > 100. **Quesito n. 3** Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n^3 \\ n \end{cases}$ (a) $a_n = o(n^4)$ per $n \to +\infty$; (b) $a_n = o(n^2)$ per $n \to +\infty$; (c) $\lim_{n \to +\infty} a_n = +\infty$. Allora quelle vere sono A solo (a) B solo (a) e (b) C solo (a) e (c) D nessuna E solo (c) F tutte Quesito n. 4 Il $\lim_{n\to+\infty} \left(1+\frac{1}{n+2}\right)^{n-1}$ $A \sqrt{e^e} B \sqrt{e} C e^e D e E + \infty F 1$ Quesito n. 5 Sia C un sottoinsieme non vuoto di ${\bf R}$. Si considerino le affermazioni (a) se C è chiuso allora è anche limitato; (b) se C è chiuso allora ogni successione in esso contenuta ha una sottosuccessione convergente; (c) se C è chiuso allora ogni successione convergente in esso contenuta ha il limite che sta ancora in C. A 2 affermazioni sono vere ed una è falsa B (a), (b) e (c) sono tutte false C (c) è vera e (a) e (b) sono false D (b) è vera e (a) e (c) sono false E (a) è vera e (b) e (c) sono false F (a), (b) e (c) sono tutte vere Quesito n. 6 Il $\lim_{x\to 0} \frac{e^x - e^{2x}}{\tan 5x}$ è uguale a: $A \frac{1}{5} B + \infty C \frac{2}{5} D - \frac{2}{5} E_0 F - \frac{1}{5}$ Quesito n. 7 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = n^{100}$, $b_n = 2^n$ e $c_n = 100^{\sqrt{n}}$, si ha: $\boxed{ \triangle } \ b_n = o(c_n) \ \ e \ c_n = o(a_n) \quad \boxed{ E } \ b_n = o(a_n) \ \ e \ a_n = o(c_n) \quad \boxed{ C } \ a_n = o(b_n) \ e \ b_n = o(b_n) \ e \ b_n = o(a_n) \quad \boxed{ E } \ c_n = o(a_n) \ \ e \ a_n = o(b_n) \quad \boxed{ E } \ a_n = o(b_n)$ Quesito n. 8 Sia $A = \mathbf{Z} \cup (0, +\infty)$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A;(b) 1 è un punto di frontiera per A; (c) 1 è un punto interno per A. Allora quelle vere sono: A solo (a) B solo (a) e (b) C solo (b) D solo (a) e (c) E solo (c) F nessuna Quesito n. 9 Sia $f(x) = \ln(1 + e^{x^2})$. Calcolare f'(x). Quesito n. 11 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{3}{x}\right)$? $A + \infty$ $B \cdot C$ non esiste $D \cdot 0$ $E \cdot e^3$ $F \cdot 3$ Quesito n. 12 Il $\lim_{x \to +\infty} \frac{2x^2 + \cos x + e^{-x}}{3x + \sqrt{1 + x^4}}$ vale $A + \infty$ B = 0 $C = \frac{1}{2}$ D = 0 non esiste $E = \sqrt{2}$ E = 2Quesito n. 13 Date $a_n = \frac{2}{n}$ e $b_n = \frac{1}{n} + \frac{(-1)^n}{n+1}$. Dire quali delle seguenti affermazioni sono corrette: (a) $a_n \approx b_n \text{ per } n \to +\infty;$ (b) $\lim_{n\to+\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo;}$ (c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$ \overline{A} solo (c) e (d) \overline{B} solo (a), (b) e (c) \overline{C} solo (c) \overline{D} nessuna \overline{E} solo (b) e (c) \overline{F} solo (d) **Quesito n. 14** Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = 2^n \ln n$, $b_n = n^5 \ln n$ e $c_n = 2^n$, si ha: $\boxed{ \textcolor{red}{\underline{\mathbf{A}}} \ c_n = o(a_n) \ \mathbf{e} \ a_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{B}}} \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{C}}} \ a_n = o(b_n) \ \mathbf{e} \ c_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{E}}} \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(b_n) } \quad \boxed{ \textcolor{red}{\underline{\mathbf{F}}} \ c_n = o(b_n) } \quad \boxed{$ Quesito n. 15 Si considerino le affermazioni: (a) $\ln(1+x) = o(x)$ per $x \to 0$; (b) $\ln(1-x) = -x + o(x)$ per $x \to 0$; (c) $\ln\left(1+\frac{1}{x}\right)\approx x \text{ per } x\to +\infty.$ Allora quelle vere sono A solo (a) e (c) B solo (c) C solo (a) D solo (b) E tutte F nessuna Quesito n. 16 Calcolare $\lim_{x\to 0^+} \frac{\ln(1+x^3)\sin\frac{1}{x}}{e^{x^2}-1}$ A - 1 $B - \infty$ C 0 D 1 $E + \infty$ F non esiste Quesito n. 17 $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x^3 + 2x} - \sqrt{x^3 + x^2} \right)$ vale $A - \frac{1}{2}$ B_1 C_0 $D - \frac{1}{3}$ $E - \infty$ F - 1| n.13 | n.14 | n.15 | n.16 | n.17 |
A	A	A	A	A
B	B	B	B	
C	C	C	C	
D	D	D	D	
E	E	E	E	
F	F	F	F	F

Analisi Matematica I per Ing. Edilizia ed Edile-Arch Test di Preselezione per il I Esonero - 1 E	Dicembre 2015
Compito n.119 del test di preselezione per il I esonero	Punteggi: Giusto=2, Non Fatto=0.2, Sbagliato=-0.3
Quesito n. 1 II $\lim_{x\to 0} \frac{\left(e^{x+\sin x}-1\right)^2}{e^{x^2}-\cos x}$ è uguale a:	
$A_{\frac{3}{4}} B_4 C_{\frac{8}{3}} D_8 E_{\frac{2}{3}} F_2$	
Quesito n. 2 Sia $A = \mathbf{R} - \mathbf{N}$. Si considerino le affermazioni: (a) 1 è un punto di accumulazione per A ; (b) 1 è un punto di frontiera per A ; (c) 1 è un punto interno per A . Allora quelle vere sono:	
f A solo (b) $f B$ solo (c) $f C$ solo (a) e (b) $f D$ solo (a) $f E$ solo (a) e (c) $f F$ nessuna	
Quesito n. 3 Calcolare $\lim_{x\to 0^+} \frac{(e^x - 1) (1 + \sin^2 \frac{1}{x})}{\ln(1 + \sin^2 x)}$	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
Questo ii. 4 ii $\lim_{n \to +\infty} n \left(e^n - e^n \right)$ e again a: $\boxed{A} \frac{1}{6} \boxed{B} \frac{2}{3} \boxed{C} \frac{1}{3} \boxed{D}_{+\infty} \boxed{E}_0 \boxed{F}_1$	
Quesito n. 5 Per ogni $n \in \mathbb{N}$ definiamo $a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ 2n & \text{per } n \text{ dispari.} \end{cases}$ Si considerino le affermazioni:	
(a) $\sin a_{-} = +\infty$	
(b) $\lim_{n \to \infty} a_n = +\infty;$ (c) (a_n) è una successione crescente.	
Allora quelle vere sono:	
A solo (a) e (b) B nessuna C solo (c) D solo (a) E tutte F solo (a) e (c)	
Quesito n. 6 Quanto vale il limite $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x+3} \right)$?	
A non esiste $\boxed{\mathbb{B}} \frac{1}{2} \boxed{\mathbb{C}} + \infty$ $\boxed{\mathbb{D}} 0$ $\boxed{\mathbb{E}} \sqrt{2}$ $\boxed{\mathbb{F}} 2$ Quesito n. 8 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = (n-1)^{n+1}$, $b_n = n^n$ e $c_n = (n+1)^{n-1}$, si ha:	
	$a_n = o(a_n)$ e $a_n = o(b_n)$ F $c_n = o(b_n)$ e $b_n = o(a_n)$
(a) $a_n \approx b_n \text{ per } n \to +\infty;$	
(b) $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \operatorname{con} \ell \text{ finito e non nullo;}$	
(c) $a_n = O(b_n)$ (d) $a_n = o(b_n)$	
(d) $a_n = o(o_n)$ \triangle solo (c) \triangle solo (b) e (c) \triangle nessuna \triangle solo (a), (b) e (c) \triangle solo (c) e (d) \triangle solo (d)	
Quesito n. 12 Sia $f(x) = \arctan\left(\ln\frac{1}{x}\right)$. Calcolare $f'(x)$.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Quesito n. 13 Si considerino le affermazioni:	
(a) $\tan x - \sin x = o(x)$ per $x \to 0$; (b) $\sin x = o(x)$ per $x \to 0$;	
(c) $\sin x \approx \tan x$ per $x \to 0$. Allora quelle vere sono:	
$oxed{\Delta}$ tutte $oxed{\mathbb{B}}$ solo (c) $oxed{\mathbb{C}}$ solo (a) $oxed{\mathbb{D}}$ solo (b) $oxed{\mathbb{E}}$ nessuna $oxed{\mathbb{F}}$ solo (a) e (c) $oxed{\mathbf{Quesito}}$ n. 14 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^x$, dove $h(x)$ è definita solo per $x > 0$. Allora, per tutti i valori di	
Quesito n. 14 Siano $f(x) = \ln(x)$, $g(x) = x^2$ e $h(x) = x^2$, dove $h(x)$ e definita solo per $x > 0$. Allora, per tutti i valori di $A = 2x \ln x$ $B = (\ln^2 x)^{\ln^2 x}$ $C = (\ln x^2)^{\ln x^2}$ $D = x^2 \ln^2 x$ $E = 2x^2 \ln x $ $E = (\ln x)^{2 \ln x}$	x per i quali è definita, $f \circ g \circ h$ è uguale a
Quesito n. 15 $\lim_{n \to +\infty} \frac{7n^n + 2(e^n)^2}{3e^{n^2} + 5(n!)^2}$ è uguale a:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
<u>_</u>	
Quesito n. 16 Date le successioni (a_n) , (b_n) e (c_n) definite da $a_n = \frac{\sqrt[4]{n}}{\ln n}$, $b_n = \sqrt[4]{n}$ e $c_n = \ln n$, si ha:	
$\boxed{\Delta} c_n = o(b_n) \ e \ b_n = o(a_n) \boxed{E} \ b_n = o(c_n) \ e \ c_n = o(a_n) \boxed{C} \ a_n = o(c_n) \ e \ c_n = o(b_n) \boxed{D} \ c_n = o(a_n) \ e \ a_n = o(b_n) \boxed{E} \ b_n = o(a_n) \ e \ a_n = o(a_n) $	$a_n = o(a_n) e a_n = o(c_n)$ $rac{\mathbf{F}}{\mathbf{I}} a_n = o(b_n) e b_n = o(c_n)$
 (a) se A è aperto allora la sua frontiera è vuota; (b) se A è aperto allora non contiene nessuno dei suoi punti di frontiera; 	
(c) se A è aperto allora non contiene nessuno dei suoi punti di accumulazione.	
A solo (b) e (c) B solo (c) C solo (a) D solo (b) E nessuna F tutte	
Compito n.119 Cognome:	

```
Compito n.120 del test di preselezione per il I esonero
                                                                                                                                                                                                                                                                                                                                                                                                                                              Punteggi:\ Giusto=2,\ Non\ Fatto=0.2,\ Sbagliato=-0.3
Quesito n. 1 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \frac{2^n}{n}, b_n = \frac{2^n}{\ln n} e c_n = n^8, si ha:
 \boxed{ \triangle } \ b_n = o(c_n) \ e \ c_n = o(a_n) \ \boxed{ \blacksquare } \ c_n = o(a_n) \ e \ a_n = o(b_n) \ \boxed{ \square } \ c_n = o(b_n) \ e \ b_n = o(a_n) \ \boxed{ \square } \ a_n = o(c_n) \ e \ c_n = o(b_n) \ \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \ \boxed{ \blacksquare } \ b_n = o(a_n) \ e \ a_n = o(c_n) \ \boxed{ \blacksquare } \ a_n = o(b_n) \ e \ b_n = o(b
Quesito n. 2 Il \lim_{n\to+\infty} e^n \ln (1+e^{-n}) è uguale a:
A_1 B_{\frac{2}{3}} C_{\frac{1}{6}} D_{\frac{1}{3}} E_{+\infty} F_0
Quesito n. 3 Siano f(x) = \ln(x), g(x) = x^2 e h(x) = x^x, dove h(x) è definita solo per x > 0. Allora, per tutti i valori di x per i quali è definita, h \circ g \circ f è uguale a
Quesito n. 4 Per ogni n \in \mathbb{N} definiamo a_n = \begin{cases} n & \text{per } n \text{ pari,} \\ \arctan n & \text{per } n \text{ dispari.} \end{cases} Si considerino le affermazioni:
(a) \sup_{n \in \mathbb{N}} a_n = +\infty;

(b) \lim_{n \to +\infty} a_n = +\infty;
(c) (a<sub>n</sub>) è una successione crescente.
  Allora quelle vere sono:
A tutte B solo (c) C nessuna D solo (a) e (c) E solo (a) F solo (a) e (b)
Quesito n. 5 Date a_n = \frac{3}{n} e b_n = \frac{3 + (-1)^n}{n}. Dire quali delle seguenti affermazioni sono corrette:
     (a) a_n \approx b_n \text{ per } n \to +\infty;
    (b) \lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \text{ con } \ell \text{ finito e non nullo};
     (c) a_n = O(b_n)
    (d) a_n = o(b_n)
oxed{\mathbb{A}} solo (b) e (c) oxed{\mathbb{B}} solo (a), (b) e (c) oxed{\mathbb{C}} solo (d) oxed{\mathbb{D}} solo (c) oxed{\mathbb{E}} nessuna oxed{\mathbb{F}} solo (c) e (d)
Quesito n. 6 Il \lim_{x \to 0} \frac{e^{\sin x} - \cos x}{x^2} è uguale a:
A 1 B non esiste in \mathbb{R}^* \mathbb{C} \frac{1}{2} \mathbb{D} + \infty \mathbb{E} - \infty \mathbb{F} = 0
 Quesito n. 7 Sia A = \mathbf{R} - \left\{ \sqrt{2} \right\}. Si considerino le affermazioni:
 (a) \sqrt{2} appartiene alla chiusura di A;
  (b) 0 è un punto di accumulazione per A;
  (c) \sqrt{2} è un punto interno per A.
 Allora quelle vere sono
A tutte B solo (a) e (b) C solo (b) D solo (a) e (c) E nessuna F solo (a)
Quesito n. 8 Sia f(x) = \sqrt{1 + x\sqrt{x}}. Calcolare f'(x).
                   \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{B}} \frac{1}{2\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{C}} \frac{3\sqrt{x}}{4\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{D}} \frac{1}{\sqrt{6\sqrt{x}}} \quad \boxed{\mathbf{E}} \frac{3\sqrt{x}}{\sqrt{1+x\sqrt{x}}} \quad \boxed{\mathbf{F}} \frac{1}{\sqrt{3\sqrt{x}}}
 Quesito n. 9 Sia C un sottoinsieme chiuso e non vuoto di R. Si considerino le affermazioni

 (a) il complementare di C è sempre aperto;

 (b) in ogni caso C contiene la sua frontiera;(c) C può avere punti isolati.
(a) (b) è vera e (a) e (c) sono false (a) (a) (b) e (c) sono tutte vere (b) e (c) 2 affermazioni sono vere ed una è falsa (c) è vera e (a) e (b) sono false (d) è vera e (b) e (c)
sono false F (a), (b) e (c) sono tutte false
Quesito n. 10 Calcolare \lim_{x\to 0^+} \frac{\ln(1+\sin^2 x) \sin \frac{1}{x}}{e^x-1}
A_{-\infty} B_{-1} C_{+\infty} D_0 E_{non esiste} F_1
Quesito n. 11 Il \lim_{n\to+\infty} \left(1+\frac{e}{n+2}\right)^n è uguale a
A e^e B 1 C \sqrt{e} D + \infty E e F e^2
Quesito n. 12 Quanto vale il limite \lim_{x \to +\infty} x^2 \ln \left(1 + \frac{3}{x}\right)?
A 3 B non esiste C 1 D +\infty E e^3 F 0
Quesito n. 13 Date le successioni (a_n), (b_n) e (c_n) definite da a_n = \left(1 + \frac{1}{n}\right)^{n}, b_n = 3^n e c_n = 2^n, si ha:
 \boxed{ \underline{\mathbf{A}} } \ c_n = o(b_n) \ \mathbf{e} \ b_n = o(a_n) \quad \boxed{ \underline{\mathbf{B}} } \ b_n = o(a_n) \ \mathbf{e} \ a_n = o(c_n) \quad \boxed{ \underline{\mathbf{C}} } \ a_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{D}} } \ b_n = o(c_n) \ \mathbf{e} \ c_n = o(b_n) \quad \boxed{ \underline{\mathbf{E}} } \ a_n = o(b_n) \ \mathbf{e} \ b_n = o(c_n) \quad \boxed{ \underline{\mathbf{E}} } \ c_n = o(a_n) \quad \boxed{ \underline{\mathbf{E}} } 
Quesito n. 14 Il \lim_{x \to +\infty} \frac{2x^2 + \cos x + x^4 e^{-x}}{2x^2 + \sqrt{1 + 4x^4}} vale
A 0 B \sqrt{2} C non esiste D +\infty E \frac{1}{2} F 2
Quesito n. 15 \lim_{n\to+\infty} \frac{7\ln(n+e^n)+2\sqrt{n}}{3\sqrt[2^n]{n!}+5n} è uguale a
\boxed{A}_0 \boxed{B}_{+\infty} \boxed{C}_{\frac{2}{5}} \boxed{D}_{\frac{7}{3}} \boxed{E}_{\frac{2}{3}} \boxed{F}_{\frac{7}{5}}
Quesito n. 16 Si considerino le affermazioni:
 (a) \sin x - x = o(x) per x \to 0;
 (b) \sin x \approx x \text{ per } x \to 0;
(c) \frac{\sin x}{x} \to 0 per x \to +\infty
Allora quelle vere sono:
oxed{\mathbb{A}} solo (a) oxed{\mathbb{B}} solo (c) oxed{\mathbb{C}} nessuna oxed{\mathbb{D}} solo (a) e (c) oxed{\mathbb{E}} solo (b) oxed{\mathbb{F}} tutte
Quesito n. 17 \lim_{x\to +\infty} \sqrt{x} \left( \sqrt{x^3+2} - \sqrt{x^3+1} \right) vale
A + \infty B - \frac{1}{2} C \frac{1}{2} D - 1 E_0 F_1
                                                                                                                                                                                                                                       Nome:
Compito n.120 Cognome:
                                                                                                                                                                      | No. 10 | N
                                                         A A A B B B C C C C
```