-	١
F	4

A.A. 2016-2017 30 Novembre 2016

- Dato l'insieme $A = \{ \log_2(n+15) \log_2 n \mid n \in \mathbb{N} \{0\} \}$, trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = (2^n)^{n!}$, $b_n = (2^n + 1)^{n!}$, $c_n = ((n+1)!)^{n!}$ e $d_n = (n!)^{(n+1)!}$.
- $\boxed{\textbf{3.}} \quad \text{Data} \quad f(x) = x^{2016} + \ln^5\left(\cos x\right), \quad \text{dire per quali } n \in \mathbf{N} \text{ si ha } f(x) = o\left(x^n\right) \text{ per } x \to 0.$
- 4. Data $f(x) = \sqrt{1 + x^3}$
 - (a) calcolare $f'_{+}(-1)$;
 - $(\mathbf{b})\,$ dire se è Lipschitziana su [-1,1];
 - $(\mathbf{c})\,$ dire se è uniformemente continua su [-1,1];
 - (d) dire se è uniformemente continua su $[1, +\infty)$;
 - (e) dire se è Lipschitziana su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Cognome:	Nome:	Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:......

٦	
	. ,
	_

A.A. 2016-2017 30 Novembre 2016

5.	Dato l'insieme	$A = \left\{ \log_5\left(n+4\right) - \log_5 n \right\}$	$\mid n \in \mathbf{N} - \{0\}\}$, to	rovare (se esistono) inf A	$A, \min A, \sup A \in \max A.$
----	----------------	--	--	----------------------------	---------------------------------

- Confrontare gli ordini di infinito (dicendo anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = (n^3)^{n!}$, $b_n = (n^3 + 1)^{n!}$, $c_n = (n!)^{(n+1)!}$ e $d_n = ((n+1)!)^{n!}$.
- $\boxed{\textbf{7.}} \ \ \text{Data} \quad f(x) = x^{2016} + \ln\left(\cos^3 x\right), \quad \text{dire per quali } n \in \mathbf{N} \text{ si ha } f(x) = o\left(x^n\right) \text{ per } x \to 0.$
- 8. Data $f(x) = \sqrt{\arctan x}$
 - (a) calcolare $f'_{+}(0)$;
 - (\mathbf{b}) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0,1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Cognome:	Nome:	Matr:
0		

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....

	1
l	1

A.A. 2016-2017 30 Novembre 2016

9.	Dato l'insieme	$A = \{ \log_3 (n + 26) - \log_3 n \mid n \in \mathbb{N} - 1 \}$	$\{0\}\}$,	trovare	(se esistono)	$\inf A$,	$\min A$,	$\sup A$ e
	$\max A$.							

- Confrontare gli ordini di infinito (dicendo anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = (\sqrt{n})^{n!}$, $b_n = (\sqrt{n}+1)^{n!}$, $c_n = ((n+1)!)^{n!}$ e $d_n = (n!)^{(n+1)!}$.
- 11. Data $f(x) = x^{2016} + \ln(\cos x^3)$, dire per quali $n \in \mathbb{N}$ si ha $f(x) = o(x^n)$ per $x \to 0$.
- 12. Data $f(x) = \arctan \sqrt{x}$
 - (a) calcolare $f'_{+}(0)$;
 - $(\mathbf{b})\,$ dire se è Lipschitziana su [0,1];
 - $(\mathbf{c})\,$ dire se è uniformemente continua su [0,1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Cognome:	Nome:	Matr:
Cognome:	Nome:	Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....

_		
Т		
	- 1	
	- 1	
ı		

A.A. 2016-2017 30 Novembre 2016

- Dato l'insieme $A = \{ \log_4(n+15) \log_4 n \mid n \in \mathbb{N} \{0\} \}$, trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = (\ln n)^{n!}$, $b_n = (1 + \ln n)^{n!}$, $c_n = (n!)^{(n+1)!}$ e $d_n = ((n+1)!)^{n!}$.
- $\boxed{\textbf{15.}} \ \ \text{Data} \quad f(x) = x^{2016} + \ln \sqrt{\cos x}, \quad \text{dire per quali } n \in \mathbf{N} \text{ si ha } f(x) = o\left(x^n\right) \text{ per } x \to 0.$
- 16. Data $f(x) = \ln(1 + \sqrt{x})$
 - (a) calcolare $f'_{+}(0)$;
 - (\mathbf{b}) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0,1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Cognome: Nome:	Matr:	
----------------	-------	--

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....