

A.A. 2016-2017 30 Novembre 2016

1		6 ()	, , , , , , , , , , , , , , , , , , , ,	MAX(A) = SUP(A) = 4
1.	Dato l'insieme $\max A$.	$A = \left\{ \log_2{(n+15)} - \log_2{n} \left n \in \mathbf{N} - \{0\} \right. \right\},$	trovare (se esistono) inf A ,	
	mex 21.			INF(A) = 0

2.	Confrontar	e gli ordini di	infinito (dicendo anche	se sono asintoticam	nente equivalenti) delle successioni che		
	seguono:	$a_n = (2^n)^{n!},$	$b_n = (2^n + 1)^{n!},$	$c_n = ((n+1)!)^{n!}$	$e d_n = (n!)^{(n)}$	delle successioni che $\alpha_n = \sigma(b_n)$, bn=o(cn)	(d)

3. Data	$f(x) = x^{2016} + \ln^5(\cos x)$,	dire per quali $n \in \mathbf{N}$ si ha $f(x) = o(x^n)$ per $x \to 0$.	n<10

4. Dat	$a f(x) = \sqrt{1 + x^3}$
) calcolare $f'_{+}(-1)$; $\boxed{=+\infty}$
$(\mathbf{b}$) dire se è Lipschitziana su $[-1,1]$; $N0$
$(\mathbf{c}$) dire se è uniformemente continua su $[-1,1];$
$(\mathbf{d}$) dire se è uniformemente continua su $[1, +\infty)$; $\boxed{N0}$
(e) dire se è Lipschitziana su $[1, +\infty)$. No

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Dai	il tuo consen	so alla	pubbl	icazione	del	tuo	voto	nella	pagina	web
del	docente?	SI	NO	Firma·						

 Cognome:
 Nome:
 Matr:

B

A.A. 2016-2017 30 Novembre 2016

 $\boxed{\textbf{5.}} \quad \text{Dato l'insieme} \ \ A = \left\{\log_5\left(n+4\right) - \log_5n \ \middle| \ \ n \in \mathbf{N} - \left\{0\right\}\right\}, \ \ \text{trovare (se esistono) inf } A, \ \min A, \ \sup A \in \max A.$

MAX(A) = SUP(A) = 1 MIN(A) = NON ESISTEINF(A) = O

- Confrontare gli ordini di infinito (dicendo anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = (n^3)^{n!}$, $b_n = (n^3 + 1)^{n!}$, $c_n = (n!)^{(n+1)!}$ e $d_n = ((n+1)!)^{n!}$.
- 7. Data $f(x) = x^{2016} + \ln(\cos^3 x)$, dire per quali $n \in \mathbb{N}$ si ha $f(x) = o(x^n)$ per $x \to 0$.
- - (a) calcolare $f'_{+}(0)$; $(=+\infty)$
 - (b) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0, 1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$; [5]
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

 Cognome:
 Nome:
 Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{SI} \fbox{NO} Firma:.....

C

A.A. 2016-2017 30 Novembre 2016

				MAx(A) = SUP(A) = 3
Dato l'insieme $\max A$.	$A = \left\{\log_3\left(n+26\right) - \log_3 n \middle n \in \mathbf{N} - \left\{0\right\}\right\},$	trovare (se esistono) inf A ,	$\min A$, $\sup A$ e	MIN(A) = NON ESISTE
111021 21.				INF(A)=0

10.	Confrontar	e gli ordini di infi	nito (dicendo anche se	sono asintoticament	te equivalenti) delle s	uccessioni che		
:	seguono:	$a_n = \left(\sqrt{n}\right)^{n!},$	$b_n = \left(\sqrt{n} + 1\right)^{n!},$	$c_n = ((n+1)!)^{n!}$	e $d_n = (n!)^{(n+1)!}$.	Q= 0(bn)	b, = o(c,),	c , = o (d,

11.	Data	$f(x) = x^{2016} + \ln(\cos x^3),$	dire per quali $n \in \mathbf{N}$ si ha $f(x) = o(x^n)$ per $x \to 0$.	In< 6
				l' ——

Data $f(x) = \arctan \sqrt{x}$ (a) calcolare $f'_{+}(0)$; $\boxed{z + \infty}$ (b) dire se è Lipschitziana su [0, 1]; $\boxed{N0}$ (c) dire se è uniformemente continua su [0, 1]; $\boxed{51}$ (d) dire se è Lipschitziana su $[1, +\infty)$; $\boxed{51}$ (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore **Punteggi:** 6+10+8+(1+2+2+2+2)

Cognome:....

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente?

Nome:..... Matr:.....

_	
П	
	١ ١

A.A. 2016-2017 30 Novembre 2016

	MAx(A) = SUP(A) = 2
Dato l'insieme $A = \{\log_4(n+15) - \log_4 n \mid n \in \mathbb{N} - \{0\}\}$, trovare (se esistono) inf A , min A , sup A e	MIN (A) = NON ESISTE
	INF(A) = 0

14.	Confrontar	e gli ordini di infir	nito (dicendo anche se	sono asintoticam	nente equivalent	i) delle successioni che	
						+1)!) ^{n!} .	$d_n = \sigma(c_n)$

- $\boxed{\textbf{15.}} \ \ \text{Data} \quad f(x) = x^{2016} + \ln \sqrt{\cos x}, \quad \text{dire per quali } n \in \mathbb{N} \text{ si ha } f(x) = o\left(x^n\right) \text{ per } x \to 0.$
- Data $f(x) = \ln (1 + \sqrt{x})$ (a) calcolare $f'_{+}(0)$; $= \uparrow \infty$ (b) dire se è Lipschitziana su [0, 1]; $\downarrow 0$ (c) dire se è uniformemente continua su [0, 1]; $\downarrow 1$ (d) dire se è Lipschitziana su $[1, +\infty)$; $\downarrow 1$ (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 6+10+8+(1+2+2+2+2)

Dai il tuo consenso alla pubb	licazione del tuo voto nella pagina web
del docente?	Firma:

Cognome:..... Nome:..... Matr:....