

A.A. 2016-2017 7 Febbraio 2017

- Data la funzione $f(x) = \frac{20x}{25 + x^2}$, si consideri l'insieme $A = \{f(n) \mid n \in \mathbb{N} \{0\}\}$. Trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = \left(1 + \frac{2}{n}\right)^{n^2}$, $b_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $c_n = \left(1 + \frac{1}{n+\ln n}\right)^{n^2}$ e $d_n = 4^n$.
- $\boxed{\textbf{3.}} \quad \text{Data} \quad f(x) = e^{\sin\sqrt[3]{x}} \sqrt{1+x^{\alpha}}, \quad \text{dire, al variare di $\alpha > 0$, qual \`e il suo ordine di infinitesimo per $x \to 0^+$.}$
- Data $f(x) = \sqrt{x + x^3}$ (a) calcolare $f'_{+}(0)$;
 - (b) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0,1];
 - (d) dire se è uniformemente continua su $[1, +\infty)$;
 - $(\mathbf{e})\,$ dire se è Lipschitziana su $[1,+\infty).$

Tempo: 2 ore

Punteggi: 7+10+7+(1+2+2+2+2)

Cognome:	Matr:
----------	-------

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente?

B

A.A. 2016-2017 7 Febbraio 2017

- Data la funzione $f(x) = \frac{24x}{9+x^2}$, si consideri l'insieme $A = \{f(n) \mid n \in \mathbb{N} \{0\}\}$. Trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = \left(1 + \frac{1}{n}\right)^{n^3}$, $b_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $c_n = \left(1 + \frac{1}{n + \ln n}\right)^{n^2}$ e $d_n = n^n$.
- $\boxed{\textbf{7.}} \quad \text{Data} \quad f(x) = e^{\sqrt[3]{\sin x}} \sqrt{1 + x^{\alpha}}, \quad \text{dire, al variare di $\alpha > 0$, qual \`e il suo ordine di infinitesimo per $x \to 0^+$.}$
- Data $f(x) = \sqrt{xe^x}$ (a) calcolare $f'_+(0)$;
 - (b) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0,1];
 - (d) dire se è uniformemente continua su $[1, +\infty)$;
 - $(\mathbf{e})\,$ dire se è Lipschitziana su $[1,+\infty).$

Tempo: 2 ore

Punteggi: 7+10+7+(1+2+2+2+2)

Cognome:	Nome:	Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....

C

A.A. 2016-2017 7 Febbraio 2017

- Data la funzione $f(x) = \frac{12x}{36 + x^2}$, si consideri l'insieme $A = \{f(n) \mid n \in \mathbb{N} \{0\}\}$. Trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = \left(1 + \frac{1}{2n}\right)^{n^2}, \quad b_n = \left(1 + \frac{1}{n}\right)^{n^2}, \quad c_n = \left(1 + \frac{1}{n+\ln n}\right)^{n^2} \quad e \quad d_n = 2^n.$
- $\boxed{ \mbox{\bf 11.}} \mbox{ Data} \quad f(x) = \sqrt[3]{e^{\sin x}} \sqrt{1 + x^{\alpha}}, \quad \mbox{dire, al variare di $\alpha > 0$, qual $\grave{\rm e}$ il suo ordine di infinitesimo per $x \to 0^+$.}$
- Data $f(x) = \sqrt{x + x^2}$ (a) calcolare $f'_{+}(0)$;
 - (b) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0,1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 7+10+7+(1+2+2+2+2)

Cognome:	Nome:	Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{SI} \fbox{NO} Firma:

D

A.A. 2016-2017 7 Febbraio 2017

- Data la funzione $f(x) = \frac{40x}{16 + x^2}$, si consideri l'insieme $A = \{f(n) \mid n \in \mathbb{N} \{0\}\}$. Trovare (se esistono) inf A, min A, sup A e max A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{n^2}$, $b_n = \left(1 + \frac{1}{n}\right)^{n^2}$, $c_n = \left(1 + \frac{1}{n+\ln n}\right)^{n^2}$ e $d_n = n^2$.
- Data $f(x) = \sqrt[3]{e^{\sin x} \sqrt{1 + x^{\alpha}}}$, dire, al variare di $\alpha > 0$, qual è il suo ordine di infinitesimo per $x \to 0^+$.
- 16. Data $f(x) = (1 + \sqrt{x})^2$
 - (a) calcolare $f'_{+}(0)$;
 - (b) dire se è Lipschitziana su [0,1];
 - (c) dire se è uniformemente continua su [0, 1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 7+10+7+(1+2+2+2+2)

Cognome:	Nome:	Matr:
----------	-------	-------

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....