

A.A. 2016-2017 22 Febbraio 2017

- Data la funzione $f(x) = \frac{1}{x 2017}$, si consideri l'insieme $A = \{f(x) \mid x \in \mathbf{Q} \cap (2017, +\infty)\}$. Trovare (se esistono) inf A, min A, sup A e max A. Determinare inoltre la frontiera di A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = 5^{\sqrt{n} \ln n}$, $b_n = \left(n^2\right)^{\sqrt{n}}$, $c_n = \left(2 + \frac{1}{\sqrt{n}}\right)^n$ e $d_n = 2^n$.
- Confrontare gli ordini di infinitesimo per $x \to 0^+$ (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle funzioni che seguono: $f(x) = (x^3)^x 1$, $g(x) = (x^x 1)^3$, e $h(x) = x^x^3 1$.
- 4. Data $f(x) = \sqrt{x} \cdot \cos x$
 - (a) dire se è Lipschitziana su [0,1];
 - (\mathbf{b}) dire se è uniformemente continua su [0,1];
 - (c) dire se è Lipschitziana su $[1, +\infty)$;
 - (d) (facoltativo) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 8+10+8+(2+2+2+?)

 Cognome:
 Nome:
 Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{SI} \fbox{NO} Firma:

B

A.A. 2016-2017 22 Febbraio 2017

- Data la funzione $f(x) = \frac{1}{x + 2017}$, si consideri l'insieme $A = \{f(x) \mid x \in \mathbf{Q} \cap (-2017, +\infty)\}$. Trovare (se esistono) inf A, min A, sup A e max A. Determinare inoltre la frontiera di A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = 10^{\sqrt{n} \ln n}$, $b_n = \left(n^2\right)^{\sqrt{n}}$, $c_n = \left(3 + \frac{1}{\sqrt{n}}\right)^n$ e $d_n = 3^n$.
- Confrontare gli ordini di infinitesimo per $x \to 0^+$ (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle funzioni che seguono: $f(x) = (x^3)^x 1$, $g(x) = (x^x 1)^3$, e $h(x) = x^x^3 1$.
- 8. Data $f(x) = \sqrt{x} \cdot \cos x$
 - (a) dire se è Lipschitziana su [0, 1];
 - (\mathbf{b}) dire se è uniformemente continua su [0,1];
 - (c) dire se è Lipschitziana su $[1, +\infty)$;
 - (d) (facoltativo) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 8+10+8+(2+2+2+?)

Cognome: Nome: Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{NO} Firma:.....

C

A.A. 2016-2017 22 Febbraio 2017

- Data la funzione $f(x) = \frac{1}{2017 x}$, si consideri l'insieme $A = \{f(x) \mid x \in \mathbf{Q} \cap (-\infty, 2017)\}$. Trovare (se esistono) inf A, min A, sup A e max A. Determinare inoltre la frontiera di A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = 2^{\sqrt[3]{n} \ln n}, \qquad b_n = n^{\sqrt[3]{n}}, \qquad c_n = \left(2 + \frac{1}{\sqrt[3]{n}}\right)^{\sqrt{n}} \quad \text{e} \quad d_n = 2^{\sqrt{n}}.$
- Confrontare gli ordini di infinitesimo per $x \to 0^+$ (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle funzioni che seguono: $f(x) = (x^3)^x 1$, $g(x) = (x^x 1)^3$, e $h(x) = x^{x^3} 1$.
- 12. Data $f(x) = \sqrt{x} \cdot \cos x$
 - (a) dire se è Lipschitziana su [0, 1];
 - (b) dire se è uniformemente continua su [0, 1];
 - (c) dire se è Lipschitziana su $[1, +\infty)$;
 - (d) (facoltativo) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 8+10+8+(2+2+2+?)

 Cognome:
 Nome:
 Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{SI} \fbox{NO} Firma:

D

A.A. 2016-2017 22 Febbraio 2017

- Data la funzione $f(x) = \frac{1}{2017 + x}$, si consideri l'insieme $A = \{f(x) \mid x \in \mathbf{Q} \cap (-\infty, -2017)\}$. Trovare (se esistono) inf A, min A, sup A e max A. Determinare inoltre la frontiera di A.
- Confrontare gli ordini di infinito (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle successioni che seguono: $a_n = 3^{\sqrt[3]{n} \ln n}, \qquad b_n = n^{\sqrt[3]{n}}, \qquad c_n = \left(2 + \frac{1}{\sqrt[3]{n}}\right)^{\sqrt{n}} \quad \text{e} \quad d_n = 2^{\sqrt{n}}.$
- Confrontare gli ordini di infinitesimo per $x \to 0^+$ (dicendo, nel caso, anche se sono asintoticamente equivalenti) delle funzioni che seguono: $f(x) = (x^3)^x 1$, $g(x) = (x^x 1)^3$, e $h(x) = x^{x^3} 1$.
- 16. Data $f(x) = \sqrt{x} \cdot \cos x$
 - (a) dire se è Lipschitziana su [0, 1];
 - (\mathbf{b}) dire se è uniformemente continua su [0,1];
 - (c) dire se è Lipschitziana su $[1, +\infty)$;
 - (d) (facoltativo) dire se è uniformemente continua su $[1, +\infty)$.

Tempo: 2 ore

Punteggi: 8+10+8+(2+2+2+?)

Cognome: Nome: Matr:

Dai il tuo consenso alla pubblicazione del tuo voto nella pagina web del docente? \fbox{SI} \fbox{NO} Firma: